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ABSTRACT

Networks in the parietal and premotor cortices enable essential human abilities regarding

motor processing, including attention and tool use. Even though our knowledge on its
topography has steadily increased, a detailed picture of hemisphere-specific integrating
pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging,

probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity
patterns between frontal premotor and posterior parietal brain areas in healthy individuals.
With a two-stage node characterization approach, we defined the network role of precisely
mapped cortical regions from the Julich-Brain atlas. We found evidence for a third, left-sided,

medio-dorsal subpathway in a successively graded dorsal stream, referencing more
specialized motor processing on the left. Supplementary motor areas had a strongly
lateralized connectivity to either left dorsal or right ventral parietal domains, representing an

action-attention dichotomy between hemispheres. The left sulcal parietal regions primarily
coupled with areas 44 and 45, mirrored by the inferior frontal junction (IFJ) on the right, a
structural lateralization we termed as “Broca’s-IFJ switch.”We were able to deepen knowledge

on gyral and sulcal pathways as well as domain-specific contributions in parieto-premotor
networks. Our study sheds new light on the complex lateralization of cortical routes for motor
activity in the human brain.

AUTHOR SUMMARY

Human motor abilities are processed via specialized yet intertwined pathways in the
parietal and premotor cortex. These can be parcellated into networks of brain areas,

sharing connection patterns that differ between hemispheres. We differentiated a set of
graded pathways, connecting definable network hubs. The well-known Dorsal Stream for
visuomotor transformation appears to be left-dominantly divisible into three distinct
substreams, providing more anatomical detail about its specialization into visual and

semantic segments. Supplementary motor areas show lateralized couplings with left
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dorsal and right ventral parietal areas, respectively, while left-sided AIPS connectivity
to area 44/45 is mirrored by right-sided intersulcal links to the inferior frontal sulcus,
both deepening our understanding of incorporated multi-task faculties like attention

and speech.

INTRODUCTION

Brain regions in the human frontal and parietal cortices process abilities that allow us to
interact with our environment, arranged in functionally specific and structurally overlapping
networks.

These abilities include skills like praxis, visuomotor transformation (Jeannerod et al., 1995),
attention (Corbetta & Shulman, 2002; Thiebaut de Schotten, Dell’Acqua, et al., 2011), working
memory, language (Saur et al., 2008), and tool use (Orban & Caruana, 2014), particularly serv-

ing the realization of target-directed movements (Sakreida et al., 2016; Verhagen et al., 2013).
Basic principles for segregated circuits of parieto-premotor communication were first estab-
lished through histological tracing and electrical stimulation in nonhuman primate brains

(Rizzolatti & Luppino, 2001; Rizzolatti et al., 1998). It was proven that information travels
between specialized, often complementary parietal and frontal areas, for instance, the ventral
and dorsal stream (Rizzolatti & Matelli, 2003). The essential idea was that the posterior parietal

cortex (PPC) receives input for different sensory modalities. Depending on the activation onset
and intensity, specific projections dominate outgoing signals to, among others, premotor
domains (Rizzolatti & Luppino, 2001; Rizzolatti et al., 1998). Hence, areas in the PPC and
premotor cortex (PMC) function as places of integration and transformation, allowing for

stimulus-adjusted action.

With the help of structural and functional brain imaging, individual cortical areas have

been associated with distinct human abilities. In the current study, we were focusing on pari-
etal and premotor association brain areas, which form a key network for movement processing
and its supportive faculties.

Broca’s area (area 44, area 45) in the ventrolateral prefrontal cortex (VLPFC) is well-known
for its role in language (Saur et al., 2008), which is realized through a complex network of
mainly left lateralized brain regions, like the adjacent inferior frontal sulcus (IFS) (Bradler,

2015) and the inferior frontal junction (IFJ) (Friederici & Gierhan, 2013). Furthermore, areas
44 and 45 are associated with object identity (Rottschy et al., 2012), movement analysis
(Binkofski et al., 2000), and motor programs (Ramayya et al., 2010). While the IFS is also

responsible for working memory and cognitive tasks (Bradler, 2015; Van Doren et al.,
2010), the more caudal IFJ appears important for attention (Zanto et al., 2010) and cognitive
control (Friederici & Gierhan, 2013).

The core PMC in humans comprises a ventral premotor cortex (PMv), usually associated
with working memory (Liu & Pleskac, 2011) and motor planning (Nuttall et al., 2018), espe-
cially for grasping movements (Tomassini et al., 2007), as well as a dorsal portion (PMd),

known to be engaged in cognition (Genon et al., 2017), reaching, and hand movements
(Caspers et al., 2010).

Most dorsally, the supplementary motor area (SMA) is composed of an SMAproper and a

PreSMA subregion, dealing with language (through ventral connectivity) (Hertrich et al.,
2016), motor learning, planning and execution (Genon et al., 2017), as well as action timing
(Passingham & Lau, 2019).

Visuomotor transformation:
The ability of the brain to use visual
information from the environment for
steering object interaction like
reaching.
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The PPC can be divided into an inferior and superior parietal lobule (IPL, SPL), separated by
an anterior and posterior portion of the intraparietal sulcus (aIPS, pIPS). It is important to men-
tion that the terms “AIP” and “PIP” are also used for more distinct subareas of the intraparietal

sulcus (IPS) in macaque monkeys (Orban et al., 2006) and should not be confused with our
current division of the human IPS into an anterior (aIPS) and a posterior (pIPS) segment.

While most of the IPL is active during attention tasks (Binkofski, Klann, & Caspers, 2016;

Caspers et al., 2011; Corbetta & Shulman, 2002), language (Binkofski et al., 2016; Caspers
et al., 2013), motor preparation, and planning of gestures, often for tool use (Caspers et al.,
2011; Ramayya et al., 2010), especially areas in the supramarginal gyrus are putatively rele-

vant for the mirror neuron system (Rizzolatti & Craighero, 2004) and coding of near-body
objects (Brozzoli et al., 2011).

Both the aIPS and the pIPS are involved in attentional processes (Gillebert et al., 2013),

while the former also shares information for reaching (Rodríguez-Herreros et al., 2015) and
the latter is rather known for its involvement in arm/eye movement control (Konen et al.,
2013) and language skills (Richter et al., 2019). Similarly, superior parietal hubs got associated

with the processing of attention (Roski et al., 2013) and reaching movements (Diedrichsen
et al., 2005).

It is important to note that many of these faculties are highly lateralized in the human brain,

such as praxis in the left hemisphere (Jeannerod et al., 1995), musical processing in the right
IFS (Bradler, 2015), word listening in the left IPL, and nonlinguistic listening in the right SMA
(Hesling et al., 2019). Since hemispheric lateralization plays only a marginal role in the non-

human primate cortex (Passingham, 2008), it becomes evident that segregated and graded
cortico-cortical pathways must serve important purposes for complex, multitask behavior in
humans.

Another key feature of the human-environment interaction is the visuomotor transformation
for object interaction. It is known to be processed along integrated, but separate, dorsal
substreams, that is, a dorso-dorsal and ventro-dorsal pathway (Binkofski & Buxbaum,

2013; Rizzolatti & Matelli, 2003), tracing back to the two-stream model of visual processing
in nonhuman primates (Mishkin & Ungerleider, 1982) and humans (Goodale & Milner, 1992),
which was very recently extended by a third, lateral pathway, involved mainly in social cog-

nition aspects of visual processing (Pitcher & Ungerleider, 2021). While online action control
happens mainly dorso-dorsally along the SPL and dorsal premotor domains, the ventro-dorsal
stream (including aIPS, IPL, and PMv) serves more semantic aspects of space perception and
action understanding (Binkofski & Buxbaum, 2013; Rizzolatti & Matelli, 2003). These features

enable humans not only to use tools in a proper manner but also to cognitively process inter-
action and consciously observe the behavior of others (Orban & Caruana, 2014). For such
multilayered processing of sensory perception, conceiving, and (re)active output coordination,

integrated cortical circuits are necessary.

Consequently, in the current study, we aimed at getting a deeper understanding of connec-
tivity lateralization and network contribution of posterior parietal and premotor brain areas.

We therefore used the recently proposed, finely parcellated regions of interest (ROIs) from
the Julich-Brain atlas (Amunts et al., 2020) and applied a de novo two-stage procedure for
characterizing these areas as nodes in the respective networks. High-resolution diffusion-

weighted magnetic resonance imaging (DW-MRI), probabilistic tractography, and Graph The-
ory Analysis (GTA) allowed us to depict the shortest paths of parieto-premotor couplings,
located on segments of larger interlobar routes. We expected regionally specialized cortical

circuitries, including functionally relevant differences between the two hemispheres and

Probabilistic tractography:
Method of fiber-tracking between
regions of interest, where every
connection is computed multiple
times to improve certainty of a tract.

Graph Theory Analysis:
Set of mathematical tools used to
analyze (brain) networks, abstracted
into matrices of nodes (areas) and
edges (links).
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between segments of network pathways, representing the complexity of human multitask
processing.

MATERIALS AND METHODS

Subjects

The current study included 40 right-handed healthy adults (21 females and 19 males, aged 20
to 62 years, median: 23.5 years, average: 25.0 years, standard deviation (SD): 7.0 years) who
were recruited through advertising on campus. All subjects had no history of neurological dis-
ease and brain or heart surgery. Informed consent was obtained from each participant before

the experiment. The study protocol was approved by the RWTH Aachen University Indepen-
dent Ethics Committee (EK 077/16). All experiments were performed in accordance with the
guidelines of the Declaration of Helsinki.

MRI Acquisition

All scans were performed on a Siemens MAGNETOM Prisma 3 Tesla MRI scanner (Siemens
Medical Systems, Erlangen, Germany). Participants were instructed to lie calmly and move as
little as possible during the measurement. A 20-channel head coil was used. High-resolution

T1-weighted images were obtained by magnetization prepared rapid-acquisition gradient echo
sequences with parameters as follows: 1.0-mm slice thickness with no interslice gap,
192 slices, time repetition (TR) = 1,900 ms, echo time (TE) = 2.21 ms, time to inversion =

900 ms, number of excitations (NEX) = 1, in-plane acquisition matrix = 256 × 256, time of
acquisition (TA) = 4:18 min.

Diffusion tensor images were acquired using a single-shot Echo-planar imaging-based

sequence: whole-brain coverage, 1.5-mm slice thickness with no interslice gap, 92 axial
slices, TR = 3,230 ms, TE = 89.2 ms, NEX = 1, in-plane acquisition matrix = 140 × 140 with
75% phase partial Fourier, FOV = 210 × 210 mm2, TA = 5:41 min. We applied 99 diffusion

directions with b-values = 0, 1,500 and 3,000 s/mm2 in terms of a multishell acquisition
scheme to benefit from a stronger MRI signal of a lower b-value as much as higher angular
contrast of a larger b-value to obtain more accurate local fiber estimations (Jbabdi et al., 2012).

Preprocessing and Tractography

All preprocessing steps were executed in FSL (FMRIB’s Software Library, version 6.0, URL:
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). To correct for susceptibility-induced distortions, we
applied the topup function (Andersson et al., 2003; Smith et al., 2004). Nonbrain tissue was

removed via the BET tool (Smith, 2002). Distortion correction of eddy currents and subject
head motion was conducted using the eddy tool (Andersson & Sotiropoulos, 2016).

For registration, the respective T1-weighted image was co-registered to the corresponding

b = 0 image in the diffusion MRI space, using the FLIRT tool (Jenkinson et al., 2002; Jenkinson
& Smith, 2001). On the newly created T1/b0 image, an inverse transformation was applied to
warp the Julich-Brain atlas masks from the Montreal Neurological Institute (MNI) space to the

diffusion MRI native space. The ROIs in this atlas were created probabilistically from a set of
postmortem brain samples, merged into a whole-brain template, where, for each voxel, the
probability of all cytoarchitectonic brain areas was considered to determine the most probable
assignment (Eickhoff et al., 2005).

On the preprocessed diffusion data, we applied the BedpostX function (Hernández et al.,
2013), using a multishell ball and zeppelins deconvolution (Sotiropoulos et al., 2016) as well

Multishell diffusion MRI:
Combining different b-values
(gradient strengths) in diffusion
magnetic resonance imaging
acquisition to enhance the
distinction of brain tissues.
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as a Rician noise model instead of default Gaussian noise (Jbabdi et al., 2012). The output was
used in probabilistic tractography via Probtrackx (Behrens et al., 2007).

In Probtrackx, we used a multiple-mask approach with 5,000 individual samples (i.e.,

streamlines) drawn from the center of each voxel. A symmetric ROI-by-ROI connectivity
matrix was generated for all 37 brain areas, where each cell contains the probabilistic number
of tracks seeded from a certain ROI, reaching another ROI. Anonymized connectivity matrices

for all participants can be found as shared data in an open repository (DOI: 10.6084/m9
.figshare.21814770).

The anatomical location of the network’s ROIs can be found in Figures 1.1 and 1.2 in the

MNI space. Please note that a depiction of the right hemisphere network was omitted due to its
highly similar topography to avoid redundancy.

Please also find the comprehensive overview on the network’s ROIs in the Supporting Infor-
mation: A schematic overview on the network’s anatomy is given as Supporting Information
Figure S1. Centers of gravity for bilateral ROIs are presented in Supporting Information Table
S1; size and corresponding cortical areas in nonhuman primates for the network’s ROIs can be

found in Supporting Information Table S2.

Prior to registration, the PMv ROI was manually created based on previous parcellation

schemes for the human ventral PMC (cf., e.g., Callan et al., 2010). The left PMv had a centroid
of −45.91, −5.64, 42.34 (x, y, z) and right PMv of 42.34, −5.70, 43.97.

Postprocessing

Normalization of matrices was realized by division through the total number of generated
tracts from a given seed in each subject (the so-called “waytotal”), as well as averaging by

taking the mean of every (directional) ROI pair (i.e., a fronto-parietal and a parieto-frontal ori-
entation). Our graph can therefore be classified as weighted-undirected because it contains
edge weights (the probabilistic streamline count per link) and does not differentiate between

ROI parcellation:
Division of the brain into distinct
areas of interest, using
microanatomical parameters to
define borders.

Figure 1. Localization of parietal ROIs in MNI space, left hemisphere. 1.1. Left-sided parietal ROIs on a three-dimensional brain template in
MNI space. (A) aIPS: hIP1 (red), hIP2 (green), and hIP3 (blue). (B) IPL: PF (red), PFcm (green), PFm (blue), PFop (purple), PFt (yellow), PGa (light
blue), and PGp (white). (C) pIPS: hIP4 (red), hIP5 (green), hIP6 (blue), hIP7 (purple), hIP8 (yellow), and hPO1 (light blue). (D) SPL: 5Ci (red), 5L
(green), 5M (blue), 7A (purple), 7M (yellow), 7P (light blue), and 7PC (white). Localization of premotor ROIs in MNI space, left hemisphere.
1.2. Left-sided premotor ROIs on a three-dimensional brain template in MNI space. (A) VLPFC: area 44 (red) and area 45 (green). (B) IFS: IFJ1
(red), IFJ2 (green), IFS1 (blue), IFS2 (purple), IFS3 (yellow), and IFS4 (light blue). (C) PMC: PMv (red), PM6d1 (green), PM6d2 (blue), and PM6d3
(purple). (D) SMA: PreSMA (red) and SMAproper (green).
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afferent and efferent paths. Since binarization can be considered as oversimplifying and the
probability of molecular displacement along a vector is thought to be the same no matter the
direction on the vector, this graph type is often recommended (Yeh et al., 2021). Note that only

parieto-premotor couplings (i.e., 23 parietal × 24 premotor = 322 ROIs) were included in the
final analysis, omitting intralobular, local connections, which would have distorted the fronto-
parietal connectivity analysis.

GTA tools facilitate the quantification of network properties by applying summary metrics
(Rubinov & Sporns, 2010). In general, ROIs are called nodes (or vertices), while the connec-
tions between them, that is, the streamlines, are called edges (or links) of the graph. We used

tools provided by the Brain Connectivity Toolbox (BCT; URL: https://www.brain-connectivity
-toolbox.net) (Rubinov & Sporns, 2010).

In probabilistic connectomics, thresholding is a common tool for reducing weak connec-

tion weights as putative false positives in a network. Although a universally ideal threshold
does not exist, most approaches decide for applying a specific range of thresholds to increase
specificity of tractography data (Yeh et al., 2021). This multithreshold approach usually sug-

gests a lower cutoff above 0.01 (normalized and averaged streamline count), since it seems
adequate to include smaller but supposedly relevant long-distance couplings (Tsai, 2018). We
decided for a two-step strategy where we first averaged all edge weights into a three-
dimensional whole-group matrix (mean(Pij) + 2 × SD(Pij), where SD is the standard deviation

and Pij is an edge of the graph), on which we secondly applied a threshold range between 0.01
and 0.1 in steps of 0.0025, resulting in 37 thresholded matrices per hemisphere (Cao et al.,
2013; Tsai, 2018).

For validation of adequacy of the used threshold range, we exerted three goodness criteria
proposed by Yun and colleagues (2020): (a) connectedness, (b) modularity, and (c) small-

worldness. By that, we ensured that the selected thresholded graphs (a) only contain nodes
that remain connected to other nodes in the network, (b) can be internally well divided into
smaller subnetworks (i.e., modules), and (c) provide clear segregative and integrative features
as a network.

Firstly, all thresholded graphs were screened for connectedness. Please find the respective
MATLAB formula within the Supporting Information as Supplementary Methods (MATLAB,

MathWorks, Version 2019b, URL: https://www.mathworks.com/products/matlab.html). An
undirected graph is connected if every pair of nodes is linked by a path (of one or more edges).

Secondly, the modularity of all graphs was examined using Newman’s spectral reordering

algorithm (Newman, 2006), which is defined as:

Q ¼ 1
l

X
i;j2N aij −

kikj
l

 
δmi ;mj ;

where mi is a module containing node i and δmi,mj
= 1 if mi = mj, otherwise 0. Aij stands for an

element of the adjacency matrix, which becomes 1 if there is an edge between nodes i and j; l
represents the number of edges in the graph, and k is a node’s degree.

As indicated in the Yun study, thresholded matrices with a maximized modularity “Q” of
above 0.3 were supposed to be included, so that a high level of topological clustering was
ensured.

Thirdly, it was tested if all thresholded graphs had a small-world topology. In short, a net-
work is small-world if it combines functionally specialized modules (high segregation) and a
robust number of intermodular links (high integration), while it appears to be more clustered

Small-worldness:
Feature of a network, having most of
its components densely linked to
each other with primarily short paths
between them.
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than random networks (Uehara et al., 2014). For evaluation of “small-worldness,” the cluster-
ing coefficient (CC) as well as the characteristic path length (CPL) were computed on native
and null model networks for each threshold. The CC is given as follows (Watts & Strogatz,

1998):

C ¼ 1
n

X

i2N
Ci ¼

1
n

X

i2N

2ti
ki ki − 1ð Þ ;

with Ci as the CC of node i (Ci = 0 for ki < 2). The CPL is given as follows (Watts & Strogatz,
1998):

L ¼ 1
n

X

i2N
Li
X

i2N

P
j2N;j≠idij
n − 1

;

with Li as the average distance between node i and the rest of nodes.

Ideally, the CC would have a value above 1, while the CPL is approximately 1 (Gong et al.,
2009). In Humphries and Gurney (2008), small-worldness was stated as:

S ¼
C

Crand

L
Lrand

≫1;

where C stands for the CC and L for the CPL.

Every matrix with a quotient above 1 was classified as small-world and included in further
analysis (Uehara et al., 2014). The thresholded connectivity matrices for both hemispheres can

be accessed via an open repository (DOI: 10.6084/m9.figshare.21378246).

We used the distance matrix function by Dijkstra’s algorithm, which contains lengths of
shortest paths between all pairs of nodes, to find important couplings between ROIs across

the network (Dijkstra, 1959). For connectivity analysis, an average of each ROI-to-ROI con-
nection (link) across subjects was used (mean(Pij) + 2 × SD(Pij)). Focusing on the fronto-parietal
connectivity, we counted all connection weights below the first quartile (25th percentile) as

highly linked. This is because higher probabilistic streamline counts are equivalent to shorter
path lengths between nodes, interpreted as high connectivity. Since length weights differ rel-
atively little between neighboring brain regions, we added a second, more rigorous cutoff to

detect strongest links below the 15th percentile. Note that thresholding had a marginal effect
on distance matrix outcomes, so we refrained from comparing different threshold levels of
distance matrices to each other, only using the threshold level with highest density in both
hemispheres (i.e., 0.01). Distances matrices can be accessed via an open repository (DOI: 10

.6084/m9.figshare.21814827).

Statistics

To examine connectivity data for statistical robustness between hemispheres, we applied a
two-tailed paired-sample t test on each normalized and averaged parieto-premotor ROI-to-
ROI connection (n = 322) across all 40 subjects. Links between ROIs were regarded signifi-

cantly different between hemispheres to a significance level of α = 0.05, corrected for multiple
comparisons with the help of Benjamini-Hochberg’s false discovery rate (FDR) (Benjamini &
Hochberg, 1995) to adjust for an elevated type I error rate, using an open-source calculation
tool (Hemmerich, 2016). p values for all tracts can be found as Table 1 in the Results section.

Furthermore, to add information on the variability of the obtained data, we calculated the
coefficient of variation (CV), which is the SD divided by the mean, for each connection (n =

Distance matrix:
Algorithm where strong connection
between two areas is defined as
fewer steps between them.
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322) in the two hemispheres across participants. To determine tracts with similar variability in
the network, we applied a quartile clustering to the SD matrices of both hemispheres. The
lowest SDs, below the first quartile of CV values in the hemisphere, were labeled as cluster

A. Clusters B and C summarized tracts with an CV value below the second and third quartile,
respectively. The highest CV values were grouped in cluster D. Complete CV matrices are
obtainable as Supporting Information Figures S2.1 and S2.2.

Node Characterization

Regarding network nodes, we propose a novel design for hub identification and character-

ization. It is based on principles of node centrality, while a “hub” is defined as a node with
high centrality whatsoever. Centrality is the property of a node to interact with other nodes
and thereby shape a network’s integration (Rubinov & Sporns, 2010). We usually differen-

tiate individual aspects of centrality, such as degree (centrality), which describes the
amount of neighboring links a node has (again distinguished between within-module
and between-module connectivity), and betweenness centrality, which quantifies how
often a node is located on a shortest path between a pair of nodes in the network (Rubinov

& Sporns, 2010).

We suggest a two-stage classification approach to define the specific role of brain regions in

a network. For a schematic visualization, see Figure 2; for a detailed discussion of our
approach and its interpretation, see the Supplementary Discussion at the Supporting Informa-
tion. At the first stage, we used two functions to define network hubs: participation coefficient
(PC) and within-module degree z-score (WMDZ).

The PC quantifies the portion of intermodular connectivity for a given node by using the
community affiliation vector from a modularity function (Guimerà & Nunes Amaral, 2005).

Since it displays the distribution of node connections among different modules, higher values
of PC define “connector hubs” (or “intercluster hubs”), serving as bridges between separate
clusters of nodes.

An exact description of the PC is given as follows (Guimerà & Nunes Amaral, 2005):

yi ¼ 1 −
X

m2M

ki mð Þ
ki

 2

;

defining M as the set of modules (provided by modularity) and ki(m) as the number of links
between i and all nodes in module m.

The WMDZ is the within-module version of degree centrality in a given network and is
typically associated with “provincial hubs” (or “intracluster hubs”) (Cohen & D’Esposito,
2016; Rubinov & Sporns, 2010)) that link vertices within a single cluster. In the same
article, we find the mathematical definition of the WMDZ (Guimerà & Nunes Amaral,

2005):

zi ¼
ki mið Þ − �k mið Þ

σk mið Þ ;

with mi as a module containing node I, ki(mi) as the within-module degree of i, k
–
(mi) as

the mean, and σk(mi ) as the SD of the within-module mi degree distribution.

By means of these two functions, we were able to classify nodes as either connector hubs
(PC > third quartile in at least the highest and lowest threshold of all networks), provincial hubs

Betweenness centrality:
Fraction of shortest paths that pass
through a certain area (node) or tract
(edge), serving high information flow.

Network hub:
Brain area with many (local or
distant) interconnections, collecting
multiple pathways as a crossing point
in a network.
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(WMDZ > third quartile in at least the highest and lowest threshold of all networks), or non-
hubs, with the latter failing both criteria. We did not include hubs in the final classification that
lay above the PC/WMDZ cutoff only in occasional threshold graphs.

On the second stage, identified hubs were further differentiated and characterized by
their degree and betweenness centrality, using two more graph theoretical tools from the
BCT.

In weighted networks, the degree of a node is equivalent to its strength, which is the sum of
weights of all edges linked to this node and highly proportional to its size (Farahani et al.,

2019). Nodes with high strength (and relatively low betweenness) can be related to dense local
connectivity, having rich input from the surrounding brain regions.

Node betweenness centrality (NBC) yields the fraction of all shortest paths in the

network that contain a certain node, using the Brandes’ algorithm on connection-length
matrices (Brandes, 2001). Freeman (1979) described the betweenness function in
detail:

bi ¼
1

n − 1ð Þ n − 2ð Þ
X

h;j2N
h≠j; h≠i; j≠i

ρhj ið Þ
ρhj

;

where ρhj is the number of shortest paths between h and j, and ρhj(i ) is the number of
shortest paths between h and j passing through i.

A high NBC means that a node shares many shortest paths in a network and is therefore in a
topographically strategic position, either locally or between separate modules.

As a result, we computed strength and NBC for all nodes formerly defined as hubs by PC or
WMDZ and prefixed them with a more concise nodal property, summarized in Figure 2. NBC
matrices and strength tables can be found in an open repository (DOI: 10.6084/m9.figshare

.21814902; DOI: 10.6084/m9.figshare.21814917). Additionally, nonhubs with strength and
NBC values below the first quartile in the given network were called “peripheral nodes” (also
cf. Guimerà & Nunes Amaral, 2005; Meunier et al., 2009); the remaining nodes went
unclassified.

Figure 2. Node character assignment. (A) Every node was tested for hub status and type using WMDZ and PC. Hubs were further subclassi-
fied by strength (str) and NBC, while nonhubs were either called peripheral or remained unassigned. (B) Hub characterization depending on
strength and NBC; “↑” means > second quartile, “↓” means ≤ second quartile.
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RESULTS

Left Hemisphere Connectivity

Using a cytoarchitectonic parcellation from the Julich-Brain atlas, we were able to describe
connecting paths between 37 ROIs in fronto-parietal networks. Results from probabilistic trac-
tography were interpreted with the help of GTA. For quantitative analysis of tractography out-

comes, we applied Dijkstra’s distance matrix to the normalized and averaged connectivity
matrices, including only parieto-premotor connections (i.e., 23 parietal × 14 premotor =
322 ROIs), representing shortest paths of streamlines passing through pairs of ROIs; for detailed

results, see Tables 2 and 3. Paired-sample t tests (α = 0.05) were conducted on all ROI-to-ROI
connections between hemispheres with p values FDR-corrected to control for statistical
significance.

The largest patterns of connected ROIs on the left include an aIPS-area 44-Premotor group
as well as an SPL-Premotor-SMA group; while in the right hemisphere, the former changed to
aIPS-IFJ-Premotor connectivity and the latter toward IPL-areas plus human Intraparietal Area 6

(hIP6) connected to IFJ and PMC.

In detail, inferior frontal areas were well-linked to all aIPS and some IPL areas. While area
44 showed most parietal connections, especially with hIP6, 5M, 7A, and 7PC, left area 45 and

IFJ2 resembled each other in having strong connections to aIPS, PFm, and PGa. IFS areas as
well as IFJ1 primarily linked to parts of the aIPS, which we called intersulcal connections, in
contrast to gyro-sulcal connections, primarily between area 44/45 and IPL areas. Connections

between area 44 and hIP1 (p = 0.002), hIP3 (p = 0.003), PFcm (p = 0.003), PFm (p = 0.002),
PFt (p = 0.019), and PGa (p = 0.016) were significant between hemispheres, while this was true
for most area 45 couplings except for three (PFcm, p = 0.105; 5Ci, p = 0.545; 5M, p = 0.190). IFS
couplings were comparatively variable among subjects, with most tracts being among clusters C

and D, especially to parietal sulcal areas. On the contrary, area 44 and 45 connectivity was less
variable, including cluster A and B couplings with all parietal ROIs but hIP1.

PMv provided the overall shortest path lengths to parietal areas, connecting strongly to
many IPL and posterior SPL areas and, together with PM6d1, to the whole aIPS (significant

for PMv-hIP1, p = 0.003; PMv-hIP3, p ≤ 0.001; and PM6d1-hIP1, p = 0.002), with most cou-
plings belonging to the least variable clusters A and B. For the PMC, PM6d3 links were the
most variable, especially with IPS areas. Dorsal premotor and SMAs showed diverging linkage,

compared with their inferior frontal counterparts, with strongest couplings to all anterior SPL
nodes. PreSMA and, most notably, SMAproper were well associated with areas 7A (p ≤ 0.001,
p = 0.006) and 7PC (p ≤ 0.001, p = 0.007), the former grouped in clusters A and B, denoting
low variability among subjects.

From the perspective of the PPC, left aIPS mainly coupled with area 44/45, IFJ, and PMv,

with hIP2 showing the least connectivity of the three subdomains. In the left IPL, PFm and PGa
had especially strong connections with area 44/45 and PMv. In the left pIPS, hIP6 had the
strongest connections to the frontal cortex, particularly again to area 44 and PMv, while the

remaining ROIs poorly, and variably, connected to the frontal cortex. Finally, the left SPL areas
showed a clear schism between anterior SPL, 7A and 7PC on the one hand and 7M plus 7P on
the other, with the latter sparsely linking to frontal brain regions at all. 5Ci, 5L, and 5M highly

linked to all of PMC and SMA; 7A had strong connections to PMv and SMAproper; and 7PC
was linked with PM6d1, PMv, and both SMAs. Some of the most significant links (p ≤ 0.001)
of the SPL between hemispheres were area 45 (with 5L, 7A, 7PC, and 7P), IFS1–4 (with 7PC),
PMv (with 7PC and 7P), and PreSMA (with 7PC and 7P). Most SPL links showed low variability

between subjects.

Network Neuroscience 1573

Structural parieto-premotor network connectivity



Ta
bl
e
2.

D
is
ta
n
ce

m
at
ri
x
o
f
le
ft-
si
d
ed

fr
o
n
to
-p
ar
ie
ta
l
co

n
n
ec

tiv
ity

Sh
o
rt
es
tw

ei
gh

te
d
p
at
h
m
at
ri
x
(D

)b
y
D
ijk

st
ra
’s
al
go

ri
th
m
.N

o
rm

al
iz
ed

,u
n
d
ir
ec

te
d
,p

ar
ie
to
-p
re
m
o
to
r
gr
ap

h
w
ith

h
ig
h
es
td

en
si
ty

th
re
sh
o
ld

(0
.0
1
)f
o
r
th
e
le
ft
h
em

is
p
h
er
e.

C
o
lo
ri
n
g
in
d
ic
at
es

a
va

lu
e
b
el
o
w

a
ce

rt
ai
n
p
er
ce

n
til
e
in

th
e
n
et
w
o
rk
:
B
el
o
w

1
5
th

p
er
ce

n
til
e
(r
ed

),
2
5
th

p
er
ce

n
til
e
(d
ar
k
o
ra
n
ge

),
5
0
th

p
er
ce

n
til
e
(l
ig
h
t
o
ra
n
ge

),
an

d
7
5
th

p
er
ce

n
til
e
(y
el
lo
w
),
re
sp
ec

tiv
el
y.

Network Neuroscience 1574

Structural parieto-premotor network connectivity



Ta
bl
e
3.

D
is
ta
n
ce

m
at
ri
x
o
f
ri
gh

t-
si
d
ed

fr
o
n
to
-p
ar
ie
ta
l
co

n
n
ec

tiv
ity

Sh
o
rt
es
tw

ei
gh

te
d
p
at
h
m
at
ri
x
(D

)b
y
D
ijk

st
ra
’s
al
go

ri
th
m
.N

o
rm

al
iz
ed

,u
n
d
ir
ec

te
d
,p

ar
ie
to
-p
re
m
o
to
r
gr
ap

h
w
ith

h
ig
h
es
td

en
si
ty

th
re
sh
o
ld

(0
.0
1
)f
o
r
th
e
ri
gh

th
em

is
p
h
er
e.

C
o
lo
ri
n
g
in
d
ic
at
es

a
va

lu
e
b
el
o
w

a
ce

rt
ai
n
p
er
ce

n
til
e
in

th
e
n
et
w
o
rk
:
b
el
o
w

1
5
th

p
er
ce

n
til
e
(r
ed

),
2
5
th

p
er
ce

n
til
e
(d
ar
k
o
ra
n
ge

),
5
0
th

p
er
ce

n
til
e
(l
ig
h
t
o
ra
n
ge

),
an

d
7
5
th

p
er
ce

n
til
e
(y
el
lo
w
),
re
sp
ec

tiv
el
y.

N
o
te

th
at

al
lo
ve

r
sh
o
rt
es
t
p
at
h
s
w
er
e
te
n
d
en

tia
lly

sh
o
rt
er

th
an

o
n
th
e
le
ft.

Network Neuroscience 1575

Structural parieto-premotor network connectivity



Right Hemisphere Connectivity

Area 44/45 were remarkably less connected to the parietal cortex on the right than on the left,

while IFJ1 and IFJ2 seemed to mirror area 44’s role in the left cortex by coupling intensely and
significantly with aIPS (IFJ1-hIP1, p ≤ 0.001; IFJ2-hIP1, p = 0.047; IFJ1-hIP2, p = 0.020; IFJ1-
hIP3, p = 0.001), PFm (with IFJ1, p ≤ 0.001), PGa (with IFJ1, p ≤ 0.001 and IFJ2, p = 0.032),

and hIP6 (with IFJ1, p = 0.019). Least variability was found for areas 44 and 45, while sulco-
sulcal connections had most variability, even though less for AIPS-IFS connections than on
the left.

Core premotor areas heavily connected to the parietal cortex, with dorsal premotor areas
also reaching PFm, PGa, and hIP6. Links between PM6d1 and PGa (p = 0.005), PM6d1 and
hIP6 (p = 0.027), as well as PM6d3 and PGa (p = 0.009) were significantly lateralized. Com-

pared with the left, especially PM6d2 had a larger share of cluster A and B connections espe-
cially with the IPL. Interestingly, both SMAproper and PreSMA lacked stronger couplings to
any SPL area, in contrast to the left hemisphere, rather coupling with aIPS (SMAproper-hIP2,

p = 0.027) and IPL (e.g., PreSMA-PFcm, p = 0.002; PreSMA-PFt, p = 0.002), nearly all of
which fell under clusters A and B for a low CV.

The right aIPS provided strong connections to nearly all frontal ROIs, with hIP2 and hIP3

performing almost identically. From the IPL, similar to the left hemisphere, strongest cou-
plings existed to PFm and PGa. In the right pIPS, only hIP6 had thorough connections with
frontal areas, however, even stronger than on the left, notably to IFJ (significant to IFJ1, p =

0.019, but high variability) and all PMC areas (significant to PM6d1, p = 0.027, and PMv,
p ≤ 0.001, cluster B and C variability). Only 5L strongly coupled with PMv and while 7M
and 7P resembled the situation in the left cortex, 7A and 7PC switched connections from

area 44 (on the left) to IFJ2 (significant for 7PC-area 44, p = 0.005). Notably, SPL connec-
tions to PMv were even stronger than on the left (insignificant only to 7M, p = 0.253, all
but one in cluster A).

Bilateral Node Characterization

After calculating the connectivity between frontal and parietal brain areas to describe where
information is primarily transferred, we were interested in analyzing, which of the network

hubs is responsible for local or long-distance exchange. The idea behind this was that the
connectional fingerprint of a brain area can define its structural role in a network (Passingham
et al., 2002).

Therefore, brain areas were classified into nine categories of nodes in the network using a
two-stage evaluation process: We first checked for hub criteria, using the PC and the WMDZ
for each brain area. Second, we analyzed the integrative features of the hub by measuring its

“strength” and NBC. Please find a more detailed explanation of the used GTA tools and their
interpretation in the Materials and Methods section as well as a further discussion in the
Supporting Information (Supplementary Discussion).

In short, there were two types of hubs, based on nomenclature from the literature (Passingham
et al., 2002; Rubinov & Sporns, 2010; Sporns et al., 2007): connector hubs, which are nodes
that are important for (global) intermodular integration (Rubinov & Sporns, 2010) and have a

PC above the third quartile of the network, and provincial hubs, facilitating modular segrega-
tion and local connectivity (Rubinov & Sporns, 2010) that are above the third quartile of nodes
in WMDZ graphs.
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These hubs were further assigned one of four categories to differentiate their exact role in

the networks. We called a hub “rich” if the node strength (or “degree”) was among the top
50% of all nodes, “rich central” if NBC was additionally among the top 50% of nodes, “poor
central” if only NBC was above the 50th percentile of all nodes, and “poor” if strength as well
as NBC values lay below the 50th percentile. Central hubs lie on shortest paths (i.e., strong

connections) between brain areas within (provincial hubs) or between modules (connector
hubs) of a network. Please find a schematic visualization of hub roles in the network as Sup-
porting Information Figure S3. The detailed hub assignment is given in Table 4.

All nodes that did not match PC and WMDZ criteria, called “nonhubs,” could be further
specified as peripheral nodes, if both NDC and strength values were among the lowest (i.e.,
below the first quartile) in the networks (Zhang et al., 2021). We identified left PM6d3, right

PreSMA, SMAproper, and PFcm as well as bilateral PFop, 5Ci, and 7M as peripheral nodes for
having both strength and NBC values below the 25th percentile.

DISCUSSION

In the current study, we used multishell DW-MRI, tractography, and GTA techniques to inves-
tigate the structural connectivity between concisely parcellated parietal and premotor brain

areas in the human cortex. We did find not only distinct patterns of parieto-premotor pathway
segments but also clear signs of lateralization between hemispheres.

A Third, Lateralized Dorsal Substream?

Visuomotor transformation for tool use is known to be processed along two different, intercon-
nected parts of the parieto-frontal dorsal stream: the dorso-dorsal and the ventro-dorsal path-
way (Binkofski & Buxbaum, 2013; Rizzolatti & Matelli, 2003). In the present depiction of the

dorsal stream, intra- and interhemispheric gradation of connectivity becomes evident. Parieto-
frontal information might be processed in more than two dorsal substreams, differing in the
two hemispheres. Please find a visual delineation in Figures 3.1 and 3.2. The BrainNet Viewer

Table 4. Bilateral node character assignment

Left Connector hub Provincial hub

Rich central hIP3, PGa, hIP6, 7A Area 45, hIP1, hIP2, PF, 5L

Rich – hPO1, IFS3

Poor central PMv, PGp, 7PC, 7P –

Poor – PM6d2

Right Connector hub Provincial hub

Rich central PMv, hIP1, hIP3, PGp, hIP6, 7A IFS4, PFm

Rich – Area 45, hIP5, hIP8

Poor central 7PC PM6d1, PM6d2, 5L, 5M

Poor PGa –

Nodes in the left and right hemisphere were assigned a network role considering their hub properties using a
two-stage characterization approach. Connector or provincial hubs were further specialized as rich central,
rich, poor central, and poor, respectively.
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software (Version 1.7, URL: https://www.nitrc.org/projects/bnv/) was used for visualization (Xia
et al., 2013).

On the left, gradation and segregation appear very clearly, in that anterior SPL connec-
tivity becomes gradually weaker from dorsal to ventral, while posterior SPL, pIPS, and IPL
couplings behave the other way around. This was similarly seen in earlier functional con-

nectivity studies, where superior dorsal PMC was primarily connected to the dorsal parietal
domains and inferior PMd coupled strongly with intraparietal sulcal areas, while inferior
parietal areas were well connected with the ventral PMC, presumably for grasping and tool

use (Mars et al., 2011). Area aIPS performs in a slightly intermediate fashion, following an
increasing dorso-ventral gradient as well, but without disconnecting from PMd in the case of
hIP1. This coincides with hIP1’s role as a fronto-parietal connector hub and first hierarchy

domain for goal-directed movements (Verhagen et al., 2013). Intriguingly, dorso-ventral gra-
dation in the parietal cortex does not split patterns into a PMd and PMv pathway, but rather
shows similar connectivity patterns of PM6d1 and PMv, drawing a fluent passage through the

three dorsal premotor ROIs. This might be due to the more rostro-ventral position of PM6d1, but

Figure 3. Outline of a lateralized dorsal stream, left hemisphere. 3.1. Depiction of strongest links (below the 15th percentile in the undirected
distance matrix) between frontal and parietal ROIs in the left (L) hemisphere. (A–C) Detailed couplings of three overlapping substreams of the
dorsal stream, comprising a dorso-dorsal (black), medio-dorsal (gray), and ventro-dorsal (blue) pathway. A schematic overview is given in (D).
The two-colored (D) and dotted (B, C) hIP1–3/PMv arrows indicate ambiguous affiliation of the stream. Outline of a lateralized dorsal stream,
right hemisphere. 3.2. Depiction of strongest links (below the 15th percentile in the undirected distance matrix) between frontal and parietal
ROIs in the right (R) hemisphere. (A–C) Detailed connectivity in three overlapping substreams of the dorsal stream. A schematic overview is
given in (D). A dorso-dorsal (black), medio-dorsal (gray), and ventro-dorsal (blue) pathway can be differentiated, putatively organized in a two-
or threefold model, since a medio-dorsal pathway is less clearly delimitable than on the left. The two-colored (D) and dotted (B, C)
hIP1–3/PMv arrows indicate ambiguous affiliation of the stream.
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differences in the opposite hemisphere makes this purely topographical explanation question-
able. Instead, we assume that the not-yet-subparcellated area PMv is further subdividable as
well, putatively between a more ventral (“ventro-dorsal”) and a more dorsal (“medio-dorsal”)

portion, the latter converging with PM6d1 in connective patterns. A threefold division of the
parieto-frontal dorsal stream therefore propagates left-sided sensorimotor information on individ-
ual, but cross-linked processing pathways. Such interstream links were recently described for
macaques (Greulich et al., 2020).

In our model, the dorso-dorsal path connects dorsal SPL with rostro-dorsal PMd, significant
for 5Ci (p = 0.002, p = 0.016), 7M (p = 0.023, p = 0.007), and 7PC (p = 0.001, p = 0.014) to

both PM6d2 and PM6d3, putatively for reaching (Diedrichsen et al., 2005; Rizzolatti &
Matelli, 2003), hand movements (Caspers et al., 2010), and visuospatial imagery (Genon et al.,
2017). These functions are also confirmed by the fact that lesions to the dorso-dorsal stream
are known to cause optic ataxia (Karnath & Perenin, 2005). A medio-dorsal section couples

ventral SPL and parts of the IPS with intermediate PMd/v, associated in the literature with
movement coordination in space (Tomassini et al., 2007) and manual object manipulation
(Binkofski, Buccino, Stephan, et al., 1999). Ventro-dorsal fibers would process grasping

(Tomassini et al., 2007), target-oriented action (Sakreida et al., 2016), and decision-making
skills (Caspers et al., 2008) via IPL, aIPS, pIPS, and ventral PMv. IPL-PMv couplings, especially,
might transfer important semantic information for environment interaction, since lesion studies

have shown that both PGa/PGp as well as PMv are important for reading, writing, and speech
error perception (Binkofski et al., 2016; Nuttall et al., 2018), and ventro-dorsal stream pathol-
ogy includes limb apraxia (Pisella et al., 2006).

On the right, two main differences become apparent. Firstly, the gradation of sulcal areas is
less pronounced, especially for aIPS and hIP6, which show little preference between ventral
and dorsal premotor areas. Differences between left and right were significant for PM6d1-hIP1

(p = 0.002), PM6d1-hIP6 (p = 0.027), and PMv to hIP1 (p = 0.003), hIP3 (p ≤ 0.001), and
hIP6 (p ≤ 0.001). Additionally, SPL-dorsal premotor connectivity is much weaker, posing the
question whether dorso-dorsal information propagates beyond the current network (e.g., to the

dorso-lateral prefrontal cortex [dlPFC], for which there is good evidence; Caspers et al.,
2012; Greulich et al., 2020; Jung et al., 2018; Uddin et al., 2010) or becomes part of a
“medio-dorsal” PMv stream, corresponding to a presumably different internal PMv division.

This becomes more likely since, secondly, clear differences between connectivity finger-
prints of dorsal premotor areas are absent in the right hemisphere, appearing much more as
a unity than on the left, with PM6d1 and PM6d3 performing almost identically. A connective

“boundary” appears more probable between right PMd and PMv, with the assumption of an
internal splitting of upper and lower PMv. This is in accordance with not only more sulcal and
inferior parietal links of right PMd, mostly significant for PM6d1 (e.g., PM6d1-hIP1, p = 0.002),
but also for links between IPL and PM6d2 (e.g., with PFcm, p = 0.003) and PM6d3 (with PGa,

p = 0.009), while PMv connectivity keeps mainly the same. As a consequence, visuomotor
transformation on the right is either propagated via three slightly different streams (even though
also of a ventral, medial, and dorsal design) or through the previously established dyad, fitting

the model of a ventral and dorsal attentional system (Corbetta & Shulman, 2011), for instance.
It is also important to note that a differentiation into substreams might occur earlier or later in
their courses, similarly seen very recently for the human visual pathway between temporal and

IPL areas (Choi et al., 2020).

As a limitation, one must mention that PM6d2 and PM6d3 links to parietal sulcal areas
were mostly nonsignificant between hemispheres (see Table 1), together with a medium to
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high variability across subjects in PM6d3. This shows the need for verification of the current
gyro-sulcal connections in a larger cohort.

This also casts new light on the well-established anatomical concept of three distinct

superior longitudinal fasciculi (SLFs) (Thiebaut de Schotten, Dell’Acqua, et al., 2011).
Dorsal SLF1, associated with voluntary orienting of spatial attention toward visual targets
(Corbetta & Shulman, 2002), matches with parts of the left dorso-dorsal and SMA net-

works (see below) in the current study. However, its right counterpart appears to be part
of a more ventral “medio-dorsal” stream. One explanation for its “reduced” dorso-dorsal
connectivity on the right in our study could be that it is overlapping with the so-called dorsal

visuospatial pathway, connecting occipitoparietal cortex and IPL with the dlPFC (Uddin
et al., 2010), with the latter not being part of our current network and therefore missing in
fiber track counts.

The middle SLF2 is thought to communicate between its dorsal and ventral neighbors as a
modulator for dorsal networks (Thiebaut de Schotten, Dell’Acqua, et al., 2011), which can be
compared with especially strong aIPS connectivity on the right and fits to our medio-dorsal

substream on the left. Thiebaut de Schotten and colleagues described it as rather right-
lateralized (Thiebaut de Schotten, Dell’Acqua, et al., 2011) so we assume that it is currently
mirrored by stressed ventro-dorsal long-distance couplings, as between SPL and PMv, puta-
tively forming a distinct medio-dorsal pathway on the right.

The ventral-most SLF3 is thought to get activated through automatic capture of spatial
attention by visual targets (Corbetta & Shulman, 2002), probably overlapping with the arcu-

ate fasciculus (AF) (Thiebaut de Schotten, Ffytche, et al., 2011). It is currently mirrored by
IPS/IPL-PMv patterns in both hemispheres, seemingly the most stable in the network. Since
PMv connectivity is complemented by even stronger SPL input on the right, such previously

proposed lateralization (Thiebaut de Schotten, Dell’Acqua, et al., 2011) is confirmed by our
data. However, its prefrontal aspects might be further accentuated by the “Broca’s-IFJ switch”
(see below), with right-sided information predominantly reaching IFS areas, presumably for
attention processing.

A Functional Dichotomy of the SMA

The SMA is a highly sophisticated motor region of the human cortex that deals with motor

learning, action sequencing, and rhythmicity (Genon et al., 2017).

The left-sided SPL connectivity of the SMA confirms its role in converting sensory input
through gyro-gyral dorsal parietal pathways, forming a putative part of the dorso-dorsal stream.

This would encompass areas 7PC and 7P, which were designated as poor-central connector
hubs, therefore forming important domains for integration of the SPL.

Similar to right-sided SPL areas 5Ci, 5L, and 5M, the SMAs of the right hemisphere lack
most of their dorsal parieto-frontal connections, significant especially for PreSMA (with 5Ci,
p = 0.001 and 5M, p = 0.006). It is highly probable that such hemispheric divergence reflects
functional segregation for multitask processing and might serve as an equivalent of proposed

long-reach association fibers of the SPL (Caspers et al., 2012). Dorso-ventrally graded, right-
sided gyro-sulcal and gyro-gyral couplings of the SMA with aIPS and IPL might, for instance,
enable listening abilities, including attentional and executive processes (Hesling et al., 2019).

A very interesting case of a patient with isolated gait apraxia after localized bilateral SMA
infarction due to an anterior cerebral artery anomaly might underpin functionally relevant ven-
tral parietal information flow to the right SMA (Della Sala et al., 2002). Especially, IPL shows
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strong connectivity with SMAproper in the right hemisphere (although insignificant, see

Table 1), inspiring the idea that reciprocal SMA-IPL circuits could serve a more cognitive role
in action understanding (Hertrich et al., 2016) and coordination of varying sensorimotor
modalities (Nachev et al., 2008). On the other hand, considerably fewer parietal connections

of the right SMA could reflect its putative right-lateralized integration into a cortico-subcortico-
cerebellar motor network (Genon et al., 2017). A schematic overview of this SMA dichotomy
can be examined in Figure 4.

As a sidenote, the fact that 7M had no strong frontal couplings whatsoever is presumably
congruent with its role as a “connective bridge” to the temporal, rather than frontal lobe (Jung
et al., 2017), similar to the occipito-parietal hub position of PGp (Caspers et al., 2013).

The Broca’s-IFJ Switch

In the current data, connectivity between ventrolateral prefrontal and inferior parietal areas is
substantially lateralized and segregated between two frontal domains. On the left, area 44
shows predominant gyro-sulcal and gyro-gyral connections with aIPS, hIP6, and IPL (espe-

cially PGa and PFm), for the most part significant (e.g., area 44-hIP1, p = 0.002), most
probably involved in language processing (Binkofski et al., 2016; Caspers et al., 2011,
2013; Richter et al., 2019), hand movements, and object interaction (Binkofski, Buccino,

Posse, et al., 1999). Right-sided IFS areas (especially IFJ) mirror this pattern (significant,
e.g., IFJ1-hIP1, p ≤ 0.001), connoting a right-dominant intersulcal information flow between
the IFS and the IPS, putatively serving attentional tasks (Caspers et al., 2011, 2012; Corbetta &

Shulman, 2002) and working memory (Richter et al., 2019; Van Doren et al., 2010), which
could therefore spread parallelly, enabling distinct multitask abilities. We call this a lateralized
“Broca’s-IFJ switch” between motor-language (left) and attentional faculties (right).

When compared visually, the most striking difference between hemispheres are twofold
streams connecting the aIPS and area 44/45 on the left, which represent the direct long seg-
ment and the indirect anterior segment (≈ SLF3) of the AF, with only the former substantially

Figure 4. Outline of the SMA dichotomy. Depiction of strongest links between SMA and parietal
ROIs on the left (black) and right (blue). For reasons of comparison, the left and right connectivities
are both projected on the brain’s left hemisphere. A left dorso-dorsal pattern clearly differs from a
right ventro-dorsal pattern. Continuous arrows indicate strongest connectivity (below the 15th per-
centile) in the undirected distance matrix, while dotted arrows stand for connectivity below the first
quartile but above the 15th percentile.
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carrying fibers to IFJ. This is in accordance with the fact that the AF was shown to be left later-

alized and therefore presumably more clearly presents its two main fronto-parietal branches in
the left hemisphere (Thiebaut de Schotten, Ffytche, et al., 2011). On the right, aIPS-VLPFC
routes seem to propagate more coherently in what resembles the third SLF. The hemispheric
difference in connectivity could therefore also be mirrored in the difference of larger pathway

architecture. A depiction of this can be found in Figures 5.1 and 5.2.

For both patterns, we find a dorsal to ventral gradation in connectivity strength. Notably, the

“weaker” pattern of each hemisphere still solidly couples with most of aIPS, fittingly desig-
nated as rich-central connector hubs (left hIP3, right hIP1, and hIP3), along with hIP6 and
PGa. Therefore, the “weaker” network part of each side would complement the main hemi-
spheric function, that is, right-sided area 44 is involved in movement attention in space

(Binkofski et al., 2000) and left-sided IFS areas are also activated by words and pictures
(Van Doren et al., 2010). The right rich-central provincial hub PFm is in accordance with
its proposed function as a (local) transition spot between the supramarginal and the angu-

lar gyrus (Binkofski et al., 2016).

Lastly, the functional relevance of the switch is obvious in that right-sided disruption of
fibers connecting parietal and prefrontal areas lead to visuospatial neglect (Urbanski et al.,

2008), while congruent left-sided lesions can cause aphasia (Madhavan et al., 2016) and
apraxia (Culham & Valyear, 2006).

Figure 5. Depiction of bilateral tracts between aIPS, area 44/45, and IFJ. Exemplary single-subject visualization of connecting fiber tracts
between the anterior intraparietal sulcus (aIPS) and area 44/45 (A, B) as well as the inferior frontal junction (IFJ) (C, D) in sagittal (left subimage)
and axial (right subimage) planes. (A) The left-sided long (direct) and anterior segments of the AF connecting the aIPS and area 44/45 on the
left. (B) The connecting third (ventral) part of the SLF between right-sided aIPS and area 55/45. (C) The left hemisphere course of both segments
of the AF, with the long AF primarily connecting hIP1 and hIP2 with IFJ. The anterior AF does not substantially reach the IFJ but runs more
dorso-medially. (D) Connections between the aIPS and IFJ via the third SLF in the right hemisphere. While two separate yet partially inter-
twined pathways form the connective routes on the left, a more uniform right sided pathway can be differentiated. Tracts (white) were gen-
erated probabilistically and bidirectionally, a brightness threshold between 10,000 and 15,000 as well as linear interpolation were used for
illustration purposes in fsleyes (DOI: 10.5281/zenodo.7038115). Note that the software uses radiological space for template depiction, so left
and right orientation is switched. The thin light green cross marks the position of focus in all three planes. Areas included: hIP1 (dark blue),
hIP2 (light blue), area 44 (red), and area 45 (purple). A = anterior, P = posterior, L = left, R = right.
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Gyral and Sulcal Connectivity

It became evident that gyri and sulci have different connectivity properties and, therefore,

functional roles in cortical networks (Jiang et al., 2018). While gyri mostly serve as interre-
gional connection centers, sulci often represent local integration units (Deng et al., 2014).

Gyro-gyral connections were stated to represent the strongest functional pathways, trans-
mitting information among remote brain regions. This could be confirmed by long-distance
couplings between larger gyral ROIs in the premotor (e.g., PMv and area 44) and PPC (e.g.,
PFm, PGa, and 5M). Size and position can substantially influence (and possibly overestimate)

the functional role assigned to an ROI in a network, which is discussed in more detail in the
Methodical Limitations section.

Gyro-sulcal couplings are thought to have “moderate” functionality as links between intra-
and interregional routes. This is especially interesting for aIPS areas, having a topographically
exposed position close to the central sulcus, representing an intersection point for both core

premotor and (right-sided) supplementary motor areas as well as areas 44 and 45 on the left.
Hence, we would like to stimulate the idea that sulcal areas in strategic positions, like hIP1, for
instance, can be of higher functional relevance for pathway integration as formerly thought.
Intersulcal connections are known for forming indirect circuits via gyri for long-distance inte-

gration (Deng et al., 2014), often assigned a purely local network aspect. In the current study,
links between aIPS and pIPS, hIP1 and hIP6 in particular, with IFS areas prove that long-
distance intersulcal connections complement gyral information flow. These could form puta-

tive simultaneous processing pathways for parallel information flow in the cortex, seen for the
“Broca’s-IFJ switch,” possibly as grouped clusters of smaller brain areas forming local (and
probably also regional) network hubs.

Methodical Limitations

Importantly, the current study has focused on a distinct set of brain areas, covering portions of
association cortices in the frontal and parietal lobe involved in motor activity, tool use, space

perception, and interaction. With the advantage of a more concise investigation of intranet-
work connectivity comes the disadvantage of excluding several neighboring brain regions,
especially in the frontal cortex, potentially incorporated in some of the depicted subnetworks.

It is therefore reasonable to put the presented results into relation with future connectivity stud-
ies, exploring associated structural and functional cortical networks.

It is important to mention that advanced multishell Diffusion Weighted Imaging and tracto-

graphy implicate methodical limitations. Most notably, it remains difficult to reconstruct inter-
secting, crossing, or bordering streamlines, whereas smallest white matter fibers are generally
not identifiable at all (Tournier et al., 2011).

Biases of tractography usually include the following (Girard et al., 2020): (a) Algorithms
tend to better reconstruct short, large, and straight pathways; (b) streamlines close to gray mat-
ter or cerebrospinal fluid voxels tend to be underrepresented, sometimes causing spurious or

incomplete fibers; and (c) pathways on the gyral crown are preferably considered in outputs as
opposed to those in gyral walls. The latter aspect appears especially crucial since we aimed at
depicting concise connectivity patterns as well in gyri as in sulci, even between small brain

areas. Apart from possible anatomical reasons, the technical causes for this bias comprise
voxel size, a low curvature threshold, and whole-brain seeding (Schilling et al., 2018). To
compensate for this, we used a high-resolution voxel design, refrained from whole-brain seed-

ing and aimed at explicitly depicting smaller connections by subdividing the network and
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averaging results. Another example for this gyral bias is inherent to the approach of using the
CV, which is especially sensitive to changes in smaller mean values close to 0 and is therefore
less meaningful for connection strength values of sulcal ROIs, typically yielding smaller

streamline counts.

Conversely, small ROIs can affect the reconstruction of network pathways, being irregularly
shaped or having a prominent position on a gyrus, influencing the depicted course of a path-

way. We tried to compensate for this circumstance by using groups of smaller ROIs rather than
single ROIs to assign segments of pathways and by drawing on centroid positions of ROIs in
pathway visualization.

Although inverting streamline weights to lengths is deemed a suitable measure for interpre-
tation of connectivity strengths (Yeh et al., 2021), it is important to mention that short distances
can occur due to topographic proximity, high-edge weights as well as many edges connecting

two nodes. Thereby, length values can have differing reasons, not always identical with what
we understand as a “linkage” in the sense of internodal communication.

Another limitation specific to the present study is the use of a manually created ROI PMv,

which was defined in collaboration with a neuroanatomist Svenja Caspers (SC) based on its
established cortical position. On the one hand, it remains more difficult to compare with the
rest of ROIs since it was not commensurably defined in its shape and subparcellation. On the

other hand, due to its relatively large volume, it tends to “absorb” streamlines from parietal
seeds, having strong impact on cutoff selection and centrality measures. Therefore, a reevalua-
tion of the current PMv connectivity is recommendable with the use of multimodal parcellation.

Conclusions

The current study had three major results concerning structural connectivity between human
parietal and premotor brain areas:

1. A triadic dorsal stream,
2. heavily lateralized SMA couplings, and

3. a “switch” in connectivity patterns of area 44/45 and the IFJ between hemispheres.

Although less prominent on the right, a gradient of interconnected, yet distinct, substreams for
visual perception and object manipulation serves as the anatomical equivalent of a functional

gradient that both the dorsal stream and the ventral stream represent. We know that the visual
guidance of action is mainly processed via the dorsal stream (originally starting in the pri-
mary visual cortex), while the semantic and cognitive aspects are largely processed ventrally

(Goodale & Milner, 1992). Aside from the already deciphered dorso-dorsal and ventro-
dorsal substreams, a medio-dorsal pathway, emerging in the parietal cortex and connecting
mainly SPL, aIPS, PMv, and PM6d1 (again, depending on the hemisphere), is mainly gyro-sulcal

and could be involved in hand motor function and direct object manipulation (Binkofski,
Buccino, Stephan, et al., 1999; Jeannerod et al., 1995). With new insights into the internal
subdivision of the ventral PMC, we will hopefully learn more about the exact anatomic

groundwork of this processing path.

The found that the “dichotomy” of supplementary motor connectivity with the PPC builds
upon knowledge on hemisphere-specific motor processing. Dorsally oriented couplings on the

left would be closely related to the neighboring dorso-dorsal stream fibers, transferring sensory
information about animate objects in space. Its right counterpart would rather serve attentional
and cognitive functions in object interaction, necessary for multitask movement processing.
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Similarly, ventrolateral prefrontal connections of the aIPS primarily reach areas 44 and 45 on
the left for linguistic aspects of motor activity, whereas right-sided couplings are largely intersul-
cal, communicating attentional information via the IFS. This finding is especially relevant for

understanding human cortex functioning as a bilateral, simultaneous network system, consider-
ing that structural and functional lateralization is scarcely developed in nonhuman primates.
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