Home > Publications database > A comprehensive study of phase evolution and electrochemical performance of the Sr0.98Ti0.5Fe0.5O3-δ perovskite as fuel electrode for steam electrolysis > print |
001 | 1035111 | ||
005 | 20250203133243.0 | ||
024 | 7 | _ | |a 10.1016/j.jpowsour.2024.236084 |2 doi |
024 | 7 | _ | |a 0378-7753 |2 ISSN |
024 | 7 | _ | |a 1873-2755 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-00207 |2 datacite_doi |
024 | 7 | _ | |a WOS:001393846200001 |2 WOS |
037 | _ | _ | |a FZJ-2025-00207 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Winterhalder, Franziska Elisabeth |0 P:(DE-Juel1)188481 |b 0 |e First author |
245 | _ | _ | |a A comprehensive study of phase evolution and electrochemical performance of the Sr0.98Ti0.5Fe0.5O3-δ perovskite as fuel electrode for steam electrolysis |
260 | _ | _ | |a New York, NY [u.a.] |c 2025 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736319051_5689 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Perovskite-based electrodes have gained interest as alternatives to Ni-cermet fuel electrodes in solid oxide electrolysis cells (SOECs). This study investigates strontium-iron-titanate (STF) as a potential all-ceramic fuel electrode for SOECs. The chemical stability of pure STF during SOEC operating conditions at open circuit voltage (OCV) and the chemical reactivity between STF and yttria-stabilized zirconia (YSZ) under manufacturing and operation conditions are analyzed. The pure STF appears to be quite stable during SOEC operation. However, the STF and YSZ electrolyte powder mixture shows chemical interaction during manufacturing and operation conditions, confirming the need for a barrier layer between those two materials. Furthermore, the electrochemical performance of electrolyte-supported symmetrical and full cells is tested at different temperatures (650–800 °C) and steam concentrations (3–90 % H2O). A mid-term degradation test in steam electrolysis operation for ca. 1700 h is carried out under thermoneutral conditions (i = −0.43 A cm−2) at 800 °C in 50 % H2O + 50 % H2. A low Rp degradation rate (0.162 Ω cm2 kh−1) for the investigated cell containing STF fuel electrode is obtained. However, the increasing ohmic resistance during the operational period caused an overpotential increase with a rate of 195 mV kh−1. Finally, post-test analyses showed sufficient chemical stability, representing STF as a potential candidate as fuel electrode in SOECs. |
536 | _ | _ | |a 1231 - Electrochemistry for Hydrogen (POF4-123) |0 G:(DE-HGF)POF4-1231 |c POF4-123 |f POF IV |x 0 |
536 | _ | _ | |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602) |0 G:(DE-Juel1)SOFC-20140602 |c SOFC-20140602 |f SOFC |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Farzin, Yousef A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sohn, Yoo Jung |0 P:(DE-Juel1)159368 |b 2 |
700 | 1 | _ | |a Lenser, Christian |0 P:(DE-Juel1)138081 |b 3 |
700 | 1 | _ | |a Sebold, Doris |0 P:(DE-Juel1)129662 |b 4 |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 5 |
700 | 1 | _ | |a Weber, André |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Menzler, Norbert H. |0 P:(DE-Juel1)129636 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.jpowsour.2024.236084 |g Vol. 630, p. 236084 - |0 PERI:(DE-600)1491915-1 |p 236084 - |t Journal of power sources |v 630 |y 2025 |x 0378-7753 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1035111/files/1-s2.0-S0378775324020366-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1035111 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188481 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)159368 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138081 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129662 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)161591 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129636 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 0 |
914 | 1 | _ | |y 2025 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |2 APC |0 PC:(DE-HGF)0125 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-06 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2022 |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-06 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-06 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2022 |d 2024-12-06 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IMD-2-20101013 |k IMD-2 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|