001035127 001__ 1035127 001035127 005__ 20250203133238.0 001035127 0247_ $$2doi$$a10.1111/nph.19965 001035127 0247_ $$2ISSN$$a0028-646X 001035127 0247_ $$2ISSN$$a1469-8137 001035127 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00216 001035127 0247_ $$2pmid$$a39030843 001035127 0247_ $$2WOS$$aWOS:001272588100001 001035127 037__ $$aFZJ-2025-00216 001035127 041__ $$aEnglish 001035127 082__ $$a580 001035127 1001_ $$00000-0002-7682-655X$$aEmonet, Aurélia$$b0 001035127 245__ $$aAmphicarpic development in Cardamine chenopodiifolia 001035127 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2024 001035127 3367_ $$2DRIVER$$aarticle 001035127 3367_ $$2DataCite$$aOutput Types/Journal article 001035127 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736416351_16758 001035127 3367_ $$2BibTeX$$aARTICLE 001035127 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001035127 3367_ $$00$$2EndNote$$aJournal Article 001035127 520__ $$aAmphicarpy is an unusual trait where two fruit types develop on the same plant: one above and the other belowground. This trait is not found in conventional model species. Therefore, its development and molecular genetics remain under-studied. Here, we establish the allooctoploid Cardamine chenopodiifolia as an emerging experimental system to study amphicarpy. We characterized C. chenopodiifolia development, focusing on differences in morphology and cell wall histochemistry between above- and belowground fruit. We generated a reference transcriptome with PacBio full-length transcript sequencing and analysed differential gene expression between above- and belowground fruit valves. Cardamine chenopodiifolia has two contrasting modes of seed dispersal. The main shoot fails to bolt and initiates floral primordia that grow underground where they self-pollinate and set seed. By contrast, axillary shoots bolt and develop exploding seed pods aboveground. Morphological differences between aerial explosive fruit and subterranean nonexplosive fruit were reflected in a large number of differentially regulated genes involved in photosynthesis, secondary cell wall formation and defence responses. Tools established in C. chenopodiifolia, such as a reference transcriptome, draft genome assembly and stable plant transformation, pave the way to study amphicarpy and trait evolution via allopolyploidy. 001035127 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0 001035127 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001035127 7001_ $$00000-0003-4071-7340$$aPérez-Antón, Miguel$$b1 001035127 7001_ $$00000-0001-9200-4209$$aNeumann, Ulla$$b2 001035127 7001_ $$aDunemann, Sonja$$b3 001035127 7001_ $$00000-0001-7165-1714$$aHuettel, Bruno$$b4 001035127 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b5 001035127 7001_ $$00000-0003-4609-5490$$aHay, Angela$$b6$$eCorresponding author 001035127 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/nph.19965$$gVol. 244, no. 3, p. 1041 - 1056$$n3$$p1041 - 1056$$tThe new phytologist$$v244$$x0028-646X$$y2024 001035127 8564_ $$uhttps://juser.fz-juelich.de/record/1035127/files/New%20Phytologist%20-%202024%20-%20Emonet%20-%20Amphicarpic%20development%20in%20Cardamine%20chenopodiifolia.pdf$$yOpenAccess 001035127 909CO $$ooai:juser.fz-juelich.de:1035127$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001035127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b5$$kFZJ 001035127 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0 001035127 9141_ $$y2024 001035127 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21 001035127 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21 001035127 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger 001035127 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21 001035127 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0 001035127 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001035127 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-12$$wger 001035127 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW PHYTOL : 2022$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12 001035127 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEW PHYTOL : 2022$$d2024-12-12 001035127 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 001035127 980__ $$ajournal 001035127 980__ $$aVDB 001035127 980__ $$aUNRESTRICTED 001035127 980__ $$aI:(DE-Juel1)IBG-2-20101118 001035127 9801_ $$aFullTexts