001035128 001__ 1035128
001035128 005__ 20250310131241.0
001035128 0247_ $$2doi$$a10.1038/s44318-024-00346-4
001035128 0247_ $$2ISSN$$a0261-4189
001035128 0247_ $$2ISSN$$a1460-2075
001035128 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00217
001035128 0247_ $$2pmid$$a39753954
001035128 0247_ $$2WOS$$aWOS:001388934600001
001035128 037__ $$aFZJ-2025-00217
001035128 082__ $$a570
001035128 1001_ $$00000-0002-8545-8963$$aMelnikov, Nataly$$b0
001035128 245__ $$aThe Asgard archaeal ESCRT-III system forms helical filaments and remodels eukaryotic-like membranes
001035128 260__ $$aHoboken, NJ [u.a.]$$bWiley$$c2025
001035128 3367_ $$2DRIVER$$aarticle
001035128 3367_ $$2DataCite$$aOutput Types/Journal article
001035128 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740132060_12350
001035128 3367_ $$2BibTeX$$aARTICLE
001035128 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001035128 3367_ $$00$$2EndNote$$aJournal Article
001035128 520__ $$aThe ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgardarchaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved. Here we show that Asgard ESCRT-III proteins of the Lokiarcheota self-assemble into helical filaments, a hallmark of the ESCRT system. We determined the cryo-EM structure of the filaments at 3.6 Å resolution and found that they share features of bacterial and eukaryotic ESCRT-III assemblies. Markedly, Asgard ESCRT-III filaments bound and deformed eukaryotic-like membrane vesicles. Oligonucleotides facilitated the assembly of ESCRT-III filaments and tuned the extent of membrane remodeling. The ability of Asgard archaeal ESCRTs to remodel eukaryotic-like membranes, which are fundamentally different from archaeal membranes, and the structural properties of these proteins places them at the junction between prokaryotes and eukaryotes.
001035128 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001035128 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001035128 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001035128 7001_ $$0P:(DE-Juel1)181012$$aJunglas, Benedikt$$b1
001035128 7001_ $$aHalbi, Gal$$b2
001035128 7001_ $$00000-0003-4154-7136$$aNachmias, Dikla$$b3
001035128 7001_ $$00000-0003-2626-0532$$aZerbib, Erez$$b4
001035128 7001_ $$00009-0004-0847-2667$$aGueta, Noam$$b5
001035128 7001_ $$00000-0002-0910-6552$$aUpcher, Alexander$$b6
001035128 7001_ $$00000-0003-4251-6497$$aZalk, Ran$$b7
001035128 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b8$$eCorresponding author
001035128 7001_ $$00000-0003-3999-6098$$aBernheim-Groswasser, Anne$$b9
001035128 7001_ $$00000-0002-2537-6173$$aElia, Natalie$$b10$$eCorresponding author
001035128 773__ $$0PERI:(DE-600)1467419-1$$a10.1038/s44318-024-00346-4$$p665-681$$tThe EMBO journal$$v44$$x0261-4189$$y2025
001035128 8564_ $$uhttps://juser.fz-juelich.de/record/1035128/files/melnikov-et-al-2025-the-asgard-archaeal-escrt-iii-system-forms-helical-filaments-and-remodels-eukaryotic-like-membranes.pdf$$yOpenAccess
001035128 909CO $$ooai:juser.fz-juelich.de:1035128$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001035128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181012$$aForschungszentrum Jülich$$b1$$kFZJ
001035128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b8$$kFZJ
001035128 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001035128 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001035128 9141_ $$y2025
001035128 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEMBO J : 2022$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEMBO J : 2022$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-24$$wger
001035128 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001035128 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001035128 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001035128 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
001035128 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001035128 920__ $$lyes
001035128 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001035128 980__ $$ajournal
001035128 980__ $$aVDB
001035128 980__ $$aUNRESTRICTED
001035128 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001035128 9801_ $$aFullTexts