001035133 001__ 1035133
001035133 005__ 20250310131241.0
001035133 0247_ $$2doi$$a10.1016/j.physd.2024.134349
001035133 0247_ $$2ISSN$$a0167-2789
001035133 0247_ $$2ISSN$$a1872-8022
001035133 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00222
001035133 0247_ $$2WOS$$aWOS:001324371700001
001035133 037__ $$aFZJ-2025-00222
001035133 082__ $$a530
001035133 1001_ $$0P:(DE-Juel1)191419$$aAmeli, Sara$$b0$$eCorresponding author
001035133 245__ $$aTwo-step and explosive synchronization in frequency-weighted Kuramoto model
001035133 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2024
001035133 3367_ $$2DRIVER$$aarticle
001035133 3367_ $$2DataCite$$aOutput Types/Journal article
001035133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738853095_17463
001035133 3367_ $$2BibTeX$$aARTICLE
001035133 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001035133 3367_ $$00$$2EndNote$$aJournal Article
001035133 520__ $$aWe explore the dynamics of interacting phase oscillators in the generalized Kuramoto model with frequencyweighted couplings, focusing on the interplay of frequency distribution and network topology on the natureof transition to synchrony. We explore the impact of heterogeneity in the network topology and thefrequency distribution. Our analysis includes unimodal (Gaussian, truncated Gaussian, and uniform) andbimodal frequency distributions. For a unimodal Gaussian distribution, we observe that in comparison tofully-connected network, the competition between topological and dynamical hubs hinders the transition tosynchrony in the scale-free network, though explosive synchronization eventually happens. However, in theabsence of very large frequencies, the transition is gradual. While uniform frequency distributions lead toexplosive synchronization. In bimodal distributions, narrow distribution produce a two-step transition. In thiscase, central frequencies dominate the dynamics, overshadowing the topological features of the network. Forwider bimodal distributions, scale-free network exhibits a gradual increase in the order parameter, whereas infully-connected networks a first-order transition happens. These results specifically elucidate the mechanismsdriving two-step and explosive synchronization in frequency-weighted Kuramoto models, offering new insightsinto managing synchronization phenomena in complex networks like power grids, neural systems, and socialsystems.
001035133 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001035133 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001035133 7001_ $$0P:(DE-HGF)0$$aSamani, Keivan Aghababaei$$b1
001035133 773__ $$0PERI:(DE-600)1466587-6$$a10.1016/j.physd.2024.134349$$gVol. 470, p. 134349 -$$p134349 -$$tPhysica / D$$v470$$x0167-2789$$y2024
001035133 8564_ $$uhttps://juser.fz-juelich.de/record/1035133/files/1-s2.0-S0167278924003002-main.pdf$$yOpenAccess
001035133 8767_ $$d2025-01-08$$eHybrid-OA$$jDEAL
001035133 909CO $$ooai:juser.fz-juelich.de:1035133$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001035133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191419$$aForschungszentrum Jülich$$b0$$kFZJ
001035133 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001035133 9141_ $$y2024
001035133 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001035133 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001035133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001035133 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001035133 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001035133 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYSICA D : 2022$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001035133 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
001035133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001035133 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001035133 980__ $$ajournal
001035133 980__ $$aVDB
001035133 980__ $$aUNRESTRICTED
001035133 980__ $$aI:(DE-Juel1)PGI-14-20210412
001035133 980__ $$aAPC
001035133 9801_ $$aAPC
001035133 9801_ $$aFullTexts