Home > Publications database > Two-step and explosive synchronization in frequency-weighted Kuramoto model > print |
001 | 1035133 | ||
005 | 20250310131241.0 | ||
024 | 7 | _ | |a 10.1016/j.physd.2024.134349 |2 doi |
024 | 7 | _ | |a 0167-2789 |2 ISSN |
024 | 7 | _ | |a 1872-8022 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-00222 |2 datacite_doi |
024 | 7 | _ | |a WOS:001324371700001 |2 WOS |
037 | _ | _ | |a FZJ-2025-00222 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Ameli, Sara |0 P:(DE-Juel1)191419 |b 0 |e Corresponding author |
245 | _ | _ | |a Two-step and explosive synchronization in frequency-weighted Kuramoto model |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738853095_17463 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We explore the dynamics of interacting phase oscillators in the generalized Kuramoto model with frequencyweighted couplings, focusing on the interplay of frequency distribution and network topology on the natureof transition to synchrony. We explore the impact of heterogeneity in the network topology and thefrequency distribution. Our analysis includes unimodal (Gaussian, truncated Gaussian, and uniform) andbimodal frequency distributions. For a unimodal Gaussian distribution, we observe that in comparison tofully-connected network, the competition between topological and dynamical hubs hinders the transition tosynchrony in the scale-free network, though explosive synchronization eventually happens. However, in theabsence of very large frequencies, the transition is gradual. While uniform frequency distributions lead toexplosive synchronization. In bimodal distributions, narrow distribution produce a two-step transition. In thiscase, central frequencies dominate the dynamics, overshadowing the topological features of the network. Forwider bimodal distributions, scale-free network exhibits a gradual increase in the order parameter, whereas infully-connected networks a first-order transition happens. These results specifically elucidate the mechanismsdriving two-step and explosive synchronization in frequency-weighted Kuramoto models, offering new insightsinto managing synchronization phenomena in complex networks like power grids, neural systems, and socialsystems. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Samani, Keivan Aghababaei |0 P:(DE-HGF)0 |b 1 |
773 | _ | _ | |a 10.1016/j.physd.2024.134349 |g Vol. 470, p. 134349 - |0 PERI:(DE-600)1466587-6 |p 134349 - |t Physica / D |v 470 |y 2024 |x 0167-2789 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1035133/files/1-s2.0-S0167278924003002-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1035133 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)191419 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |0 PC:(DE-HGF)0125 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-16 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-16 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYSICA D : 2022 |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-16 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-14-20210412 |k PGI-14 |l Neuromorphic Compute Nodes |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-14-20210412 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|