001     1035133
005     20250310131241.0
024 7 _ |a 10.1016/j.physd.2024.134349
|2 doi
024 7 _ |a 0167-2789
|2 ISSN
024 7 _ |a 1872-8022
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00222
|2 datacite_doi
024 7 _ |a WOS:001324371700001
|2 WOS
037 _ _ |a FZJ-2025-00222
082 _ _ |a 530
100 1 _ |a Ameli, Sara
|0 P:(DE-Juel1)191419
|b 0
|e Corresponding author
245 _ _ |a Two-step and explosive synchronization in frequency-weighted Kuramoto model
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738853095_17463
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We explore the dynamics of interacting phase oscillators in the generalized Kuramoto model with frequencyweighted couplings, focusing on the interplay of frequency distribution and network topology on the natureof transition to synchrony. We explore the impact of heterogeneity in the network topology and thefrequency distribution. Our analysis includes unimodal (Gaussian, truncated Gaussian, and uniform) andbimodal frequency distributions. For a unimodal Gaussian distribution, we observe that in comparison tofully-connected network, the competition between topological and dynamical hubs hinders the transition tosynchrony in the scale-free network, though explosive synchronization eventually happens. However, in theabsence of very large frequencies, the transition is gradual. While uniform frequency distributions lead toexplosive synchronization. In bimodal distributions, narrow distribution produce a two-step transition. In thiscase, central frequencies dominate the dynamics, overshadowing the topological features of the network. Forwider bimodal distributions, scale-free network exhibits a gradual increase in the order parameter, whereas infully-connected networks a first-order transition happens. These results specifically elucidate the mechanismsdriving two-step and explosive synchronization in frequency-weighted Kuramoto models, offering new insightsinto managing synchronization phenomena in complex networks like power grids, neural systems, and socialsystems.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Samani, Keivan Aghababaei
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1016/j.physd.2024.134349
|g Vol. 470, p. 134349 -
|0 PERI:(DE-600)1466587-6
|p 134349 -
|t Physica / D
|v 470
|y 2024
|x 0167-2789
856 4 _ |u https://juser.fz-juelich.de/record/1035133/files/1-s2.0-S0167278924003002-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1035133
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191419
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Elsevier 09/01/2023
|0 PC:(DE-HGF)0125
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYSICA D : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21