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A B S T R A C T

We explore the dynamics of interacting phase oscillators in the generalized Kuramoto model with frequency-
weighted couplings, focusing on the interplay of frequency distribution and network topology on the nature
of transition to synchrony. We explore the impact of heterogeneity in the network topology and the
frequency distribution. Our analysis includes unimodal (Gaussian, truncated Gaussian, and uniform) and
bimodal frequency distributions. For a unimodal Gaussian distribution, we observe that in comparison to
fully-connected network, the competition between topological and dynamical hubs hinders the transition to
synchrony in the scale-free network, though explosive synchronization eventually happens. However, in the
absence of very large frequencies, the transition is gradual. While uniform frequency distributions lead to
explosive synchronization. In bimodal distributions, narrow distribution produce a two-step transition. In this
case, central frequencies dominate the dynamics, overshadowing the topological features of the network. For
wider bimodal distributions, scale-free network exhibits a gradual increase in the order parameter, whereas in
fully-connected networks a first-order transition happens. These results specifically elucidate the mechanisms
driving two-step and explosive synchronization in frequency-weighted Kuramoto models, offering new insights
into managing synchronization phenomena in complex networks like power grids, neural systems, and social
systems.
1. Introduction

The Frequency-weighed Kuramoto model incorporates dynamic-
dependent interactions, introducing an additional degree of freedom
to describe collective phenomena more comprehensively. This model
is inspired by the intrinsic nature of phase oscillators, where frequency
serves as a defining characteristic. Consequently, it is natural to con-
sider the connections as a function of this unique feature. In this
framework, interactions weighted by frequency can induce Explosive
Synchronization (ES) under specific network topologies and frequency
distributions. ES refers to a first-order phase transition, where the
system has an abrupt and discontinuous transition to the synchronized
state once the coupling strength exceeds a critical threshold.

Real-world biological and technological networks often exhibit topo-
logical structures that discourage explosive synchronization phenom-
ena, typically associated with pathological states. Conversely, social
network topologies actively promote the sudden and irreversible emer-
gence of synchronous states [1]. The connectivity pattern of the interac-
tion network significantly shapes collective dynamics, with heterogene-
ity in degree distribution notably influencing the order of transition to

∗ Corresponding author.
E-mail address: s.ameli.kalkhouran@fz-juelich.de (S. Ameli).

the synchronized state. A positive correlation between the network’s
structure, i.e., node degree, and its dynamics, i.e., natural frequencies,
is known to facilitate ES in heterogeneous topologies, such as scale-free
network [2].

Research reveals that local degree–degree correlation primarily con-
tributes to ES [3], particularly when the degrees and natural frequen-
cies of the network’s nodes are disassortative [4]. Interestingly, ES can
manifest even with partial degree-frequency correlations only for the
hubs, the vertices with the highest degrees. This partial correlation not
only promotes but also enables explosive synchronization in networks
where a full degree-frequency correlation would otherwise prevent
it [5]. Additionally, the degree of mixing in networks impacts the na-
ture of the synchronization transition. For instance, studies have shown
that when the interaction is dominant from the high-degree to the
low-degree (or from the low-degree to the high-degree) nodes, synchro-
nization is enhanced for assortative (or disassortative) degree–degree
correlations [6].
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Various factors contribute to the emergence and dynamics of ES.
The basin of attraction has been identified as a determinant of hystere-
sis in ES [7]. Research on the effects of frustration has highlighted its
potential as a control parameter for ES [8]. Self-organized correlations
also contribute to ES, adding complexity to ES dynamics [9]. Exper-
imental evidence from systems like mercury beating-heart oscillators
provides tangible support for the existence of ES [10]. Studies have also
explored ES transitions in adaptive and multilayer networks, as well as
in complex neural networks, revealing diverse manifestations of this
phenomenon [11,12]. Hysteretic transitions happen in the Kuramoto
model with inertia. Nodes in a second-order Kuramoto model perform
a cascade of transitions toward a synchronous macroscopic state [13–
15]. Factors such as disorder and time delay significantly impact the
dynamics of interacting oscillators [16]. Introducing quenched disor-
der to oscillator frequencies induces ES in mildly heterogeneous net-
works [17]. In addition, considering time-delayed coupling enhances ES
dynamics [18]. These studies collectively offer a comprehensive view of
the multifaceted nature of ES, encompassing various factors influencing
its occurrence and dynamics.

Frequency distribution plays a crucial role in defining the dynam-
ics of a network. Symmetric and asymmetric distributions have been
explored using the mean-field approach, shedding light on the criti-
cal coupling of ES transitions in scale-free networks [19,20]. More-
over, previous studies have investigated the frequency-weighted Ku-
ramoto model with bimodal frequency distributions [21]. The impact
of frequency-weighted couplings, which connect coupling strength to
the oscillators’ natural frequencies, is a key but underexplored factor in
understanding various synchronization phenomena. In this paper, our
research sheds light on the intricate interplay between network topol-
ogy and dynamical aspects in influencing synchronization phenomena,
focusing on the frequency-weighted Kuramoto model within scale-
free and fully-connected networks. Section 2 presents the frequency-
weighted Kuramoto model along with the network types (all-to-all and
scale-free) and other details used in this study. Section 3 presents the
results for different frequency distributions and network topologies,
comparing the nature of the transition to synchrony in each case.

2. Method

2.1. Frequency-weighted Kuramoto model

The Kuramoto model with frequency-weighted interactions, de-
scribes the dynamics of 𝑁 coupled limit-cycle oscillators. The phase
f the 𝑖’th oscillator, denoted by 𝜃𝑖, evolves according to the following
quation:

𝑑𝜃𝑖
𝑑𝑡

= 𝜔𝑖 +
𝜆|𝜔𝑖|
𝑘𝑖

𝑁
∑

𝑗=1
𝐴𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖) , 𝑖 = 1, 2,… , 𝑁 (1)

here {𝜔𝑖} is the natural frequency of 𝑖’th oscillator, drawn from a
requency distribution 𝑔(𝜔). The connectivity pattern is given by the
lements of the adjacency matrix 𝐴𝑖𝑗s, where 𝐴𝑖𝑗 = 1 for connected
odes, and 𝐴𝑖𝑗 = 0 otherwise. The degree of node 𝑖 is 𝑘𝑖 =

∑

𝑗 𝐴𝑖𝑗 ,
nd 𝜆 stands for the coupling strength. A key feature of this model
s its frequency-weighted coupling mechanism, where there exists a
ositive correlation between the coupling strength of oscillators and
he absolute value of their natural frequencies. This intricate coupling
cheme engenders heterogeneous interactions among the oscillators.

The order parameter 𝑟, which quantifies the extent of synchrony
ithin the system, as a function of phase homogeneity is defined as:

= 1
𝑁

∣
𝑁
∑

𝑗=1
𝑒𝑖𝜃𝑗 ∣ . (2)

The system size is fixed at 𝑁 = 1000, with initial phases randomly
assigned between 0 and 2𝜋. We compute the stationary value of the
2 
order parameter 𝑟 for coupling strength 𝜆 in an adiabatic manner:
progressively increasing the coupling strength until the system reaches
its stationary state, then using the outcome as the initial condition for
subsequent steps. This procedure is performed for both forward and
backward continuations, corresponding to increasing and decreasing
coupling strength, respectively.

To investigate the impact of network topology, we study two net-
work configurations: a fully connected network, where 𝑘𝑖 = 𝑁 − 1 for
all nodes, and a Barabási–Albert (BA) scale-free network. The degree
distribution 𝑃 (𝑘) represents the likelihood that a randomly selected
node in the network possesses a degree of 𝑘. The degree distribution of
scale-free network follows a power low 𝑃 (𝑘) ∼ 𝑘−𝛾 , where 𝛾 typically
ranges between 2 and 3. This results in the presence of a small number
of high-degree vertices and a large number of low-degree ones [6]. The
high-degree nodes known as hubs, strongly influence the dynamics.
While previous studies have demonstrated the significant influence
of heterogeneity in degree distribution on the emergence of ES, it
is crucial to acknowledge that it is not the sole factor determining
the nature of the transition to synchrony. The distribution of intrinsic
frequencies of the oscillators plays a decisive role in determining the
onset of synchronization.

To determine which frequency distribution properties dictate the
transition’s nature, we explore the different levels of heterogeneity. We
take frequencies from four distinct distributions: Lorentzian, Gaussian
(with and without tails), and uniform distribution. To analyze the
influence of different attributes of the intrinsic frequency distribution
on the transition to synchrony, we explore the impact of both the mean
and width of the distributions on the transition to the synchronized
state. Expanding our investigation beyond zero-centered unimodal dis-
tributions, we also explore symmetric bimodal frequency distributions
with means away from zero.

3. Results

3.1. Unimodal frequency distributions

Using the frequency-weighted Kuramoto model described in Eq. (1),
we investigate the impact of symmetric frequency distribution around
zero on the transition to synchrony. Fig. 1 presents the evolution of the
order parameter, after it reaches stationary state, as a function of the
coupling constant for both all-to-all networks (Fig. 1 (a)–(c)) and scale-
free networks (Fig. 1 (d)–(f)) under various frequency distributions
with zero mean. With a symmetric Gaussian distribution (Fig. 1 (a),
(d)), both networks exhibit an abrupt transition to the synchronized
state with hysteresis. In the all-to-all network (Fig. 1(a)), the critical
coupling in the forward transition to the synchronized state is 2.68,
while in the backward continuation, the threshold value is 2, aligning
with the exact analytical solution obtained in [22]. Our simulations for
various distribution widths (0.01, 0.1, 1, 2) confirm that the distribution
width does not affect the critical transition point, or the width of the
hysteresis loop. Interestingly, the critical coupling for the transition is
smaller in the all-to-all network compared to the scale-free network,
suggesting that the heterogeneity of degree distribution in scale-free
networks impedes the transition to synchrony. This highlights the
influence of structure-dynamics correlation in ES.

To explore the interplay between large frequencies and network
structure, we cut the tails of the Gaussian distribution. This allows us to
examine the effect of large and central frequencies on the transition to
synchrony. Note that the network’s degree distribution is fixed through-
out the study for both fully connected and scale-free networks. Under
this circumstance, because of the scale-free topology, the structural
heterogeneity is conserved, while cutting the tails decreases the het-
erogeneity in the frequency distribution. Notably, a truncated Gaussian
distribution leads to an explosive transition in the all-to-all network
as depicted in Fig. 1(b). This suggests that tail frequencies do not
significantly influence the order of transition in the fully-connected
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Stationary value of order parameter, 𝑟, versus coupling strength 𝜆 for different frequency distributions in two network topologies. Top row fully-connected network. Bottom
row BA scale-free network. (a, d): Gaussian distribution, (b), (e): Truncated Gaussian distribution, (c), (f): symmetric uniform frequency distribution.
network. Our simulations across different distribution widths (0.1, 1)
confirm that the width does not affect the critical point of transition
or the size of the hysteresis loop. However a continuous transition to
the synchronized state is observed in scale-free networks Fig. 1(e). This
can be attributed to the presence of low-degree nodes belonging to
dense sub-graphs interconnected through hubs, resulting in a gradual
increase in the order parameter. So, the heterogeneity in the degree
distribution, along with the absence of large frequencies, causes a
continuous aggregation of oscillators into the cluster of synchrony.
Notably, the system exhibits resistance to changing its dynamics, with
even very large couplings (𝜆 = 10), not reaching full synchrony (𝑟 = 1).

To separate the effect of heterogeneity in structure and frequency
distribution, we consider a uniform frequency distribution around zero.
In the fully connected network, the transition is almost continuous,
Fig. 1(c). Comparing this to Gaussian and truncated Gaussian distri-
butions (Fig. 1(a), (b)), we observe that frequency heterogeneity is
the primary factor driving hysteresis in a fully connected network.
However, degree heterogeneity in the scale-free network facilitates
the hysteresis behavior even when there is no heterogeneity in the
frequency distribution, Fig. 1(f).

3.2. Bimodal frequency distribution

To explore the impact of clustering in intrinsic frequencies, we take
frequencies from bimodal distributions, including bimodal Gausssian,
3 
Lorentzian, and uniform distributions. In Ref. [23], the effect of the lo-
cation of the center of the bimodal Lorentzian distribution was studied
while holding the width constant. In our study, we do the opposite: by
fixing the location of the center of distribution, we investigate the role
of distribution width.

The probability density function of the bimodal Lorentz distribution
is defined as:

𝑃 = 1
𝜋

(

𝛾
(𝜔 − 𝜔0)2 + 𝛾2

+
𝛾

(𝜔 + 𝜔0)2 + 𝛾2

)

(3)

Here, 𝛾 represents the width parameter of each Lorentzian peak and
±𝜔0 denote their center frequencies. It is important to note that 𝑔(𝜔) is
bimodal if and only if the peaks are sufficiently far apart compared
to their widths. Specifically, one needs 𝜔0 > 𝛾∕

√

3; Otherwise, the
distribution is unimodal.

In Fig. 2 we present the long-time averaged value of the order
parameter, defined in Eq. (2), for both all-to-all and scale-free networks.
Frequencies are taken from bimodal Gaussian and bimodal Lorentzian
distributions, and we examine the effect of the distribution width 𝛾.
Small values of 𝛾 correspond to a narrow distribution, while large 𝛾
values indicate a wider distribution. In both all-to-all and scale-free
networks, a narrow bimodal Lorentzian distribution results in a smooth
and two-step transition to the synchronized state. When 𝛾 is small, the
system has two transitions: first, from unsynchronized to two-cluster
synchrony, where oscillators within each cluster are synchronized but
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Fig. 2. Stationary value of order parameter 𝑟 versus coupling strength 𝜆 in (top) all-to-
all and (bottom) scale-free network, with bimodal Gaussian (blue) and bimodal Lorentz
(green) distribution. Picks are locatied at 2 and −2, for different scale parameter (𝛾).
In the left column 𝛾 = 0.1, and in the right column 𝛾 = 2.

clusters themselves are not. The second transition occurs with further
increase in the coupling, which is at 𝜆 = 2, where the two clusters
get synchronized. In the intermediate state, further increase in the
coupling does not significantly alter the overall order parameter. This
is because even though the degree of synchrony between the nodes
in each cluster increases, the opposite sign neutralizes the final effect
on the overall order parameter. The formation of synchronous clus-
ters is also discussed in reference [22]. As shown in the left column
of Fig. 2, for a narrow distribution in both networks, the Gaussian
distribution causes a steeper transition compared to the Lorantzian
distribution. Compared to the fully-connected network, the scale-free
network has a lower order parameter in the intermediate step and
shows less fluctuations. In scale-free networks, there is competition
between the topological hubs with a large number of connections,
and dynamical hubs with large frequencies. Scale-free networks exhibit
behavior similar to fully connected networks for a narrow distribution
as shown by the upper panel in the right column of Fig. 2. However, the
presence of high structural clustering in scale-free networks, coupled
with a wide bimodal distribution, leads to a continuous transition to
synchrony (lower panel in the right column of Fig. 2). This contrasts
with fully connected networks, where wider distributions induce ES
with hysteresis. The heterogeneous degree distribution in scale-free
networks inhibits ES, preventing a two-step transition observed in
fully-connected networks. This observation emphasizes that the spread
of the two modes of the frequency plays an important role in the
characteristics of the transition.

In social systems, for instance, strongly dominant parties attract
individuals; while in their absence, individuals form smaller groups,
much like ES, where increased coupling leads to the formation of small
groups of oscillators until they unify into a single cluster upon reaching
a threshold.

Fig. 3 represents the simulation result for a bimodal uniform distri-
bution of frequencies in a fully connected network. Here, we investigate
the effect of uniform bipartite intrinsic frequencies in a network with
homogeneous degrees. We plot the overall order parameter 𝑟 and two
sub-order-parameters 𝑟1 and 𝑟2 corresponding to the two clusters. After
the first transition, the oscillators inside each cluster are synchronized
with order parameters (𝑟1 ∼ 1) and (𝑟2 ∼ 1). However, the two clusters
are not in sync with each other, leading to a two-step transition in the
overall order parameter. By increasing the coupling constant, after the
intermediate step, the two clusters get synchronized.
4 
To delve into the system’s underlying dynamics in addition to the
order parameter, which is a global measure of synchrony, we mea-
sure the correlation matrix which provides local phase configuration
information. It measures the coherency between oscillator 𝑖 and 𝑗
and determines the local phase configuration. 𝐷𝑖𝑗 = 1 indicates full
synchrony, and 𝐷𝑖𝑗 = −1 indicates oscillators in an anti-phase state,
that is, 𝜃𝑖 = 𝜃𝑗 ± 𝜋:

𝐷𝑖𝑗 = lim
𝛥𝑡⟶∞

1
𝛥𝑡 ∫

𝛥𝑡+𝑡𝑠

𝑡𝑠
cos

(

𝜃𝑖(𝑡) − 𝜃𝑗 (𝑡)
)

(4)

where 𝑡𝑠 is the time after which the dynamics of the system reach a
stationary state. In our simulations we consider 𝑡𝑠 = 5 × 105 and the
averaging time window, 𝛥𝑡 = 3 × 104. Fig. 4 presents the correlation

matrix defined by Eq. (4), revealing three distinct dynamical phases of
the system. At low coupling values (𝜆 = 0.1, 0.8), the system exhibits
a random phase state with no correlation between the phases of the
oscillators. At intermediate coupling values (𝜆 = 1.2, 1.4), a two-cluster
state emerges, where oscillators within each cluster synchronize with
each other but not with those in the other cluster. Finally, at high
coupling values (𝜆 = 3.6), the system achieves a fully synchronized
state, where both clusters synchronize.

4. Concluding remarks

We investigated the effect of frequency distribution and network
topology on the nature of the transition to synchronization under the
frequency-weighted model, which considers the positive correlation
between coupling strength and intrinsic dynamics of the nodes. By
examining intrinsic frequencies from Gaussian, truncated Gaussian,
uniform, and bimodal distributions across all-to-all and scale-free net-
works, we found that both network topology and frequency distribution
critically influence synchronization dynamics. All-to-all and scale-free
topology both show ES with hysteresis under Gaussian frequency distri-
bution. However, scale-free networks exhibited continuous transitions
in the absence of large frequencies, while fully connected networks
showed hysteretic behavior. In the uniform frequency distribution, fully
connected network shows a continuous transition to synchrony while
the scale-free network exhibits a hysteretic behavior.

To clarify the mechanism, we conducted simulations for bimodal
uniform distribution. While narrow frequency distributions lead to two-
step transition to synchrony, wider distributions can result in either
explosive or continuous transitions depending on the network topology.
In a fully-connected network, the transition is explosive, whereas a scle-
free topology leads to a continuous transition. The results are similar
for both Lorentzian and Gaussian distributions.

These findings provide crucial insights into the mechanisms driving
synchronization in complex systems, highlighting the significant role
of network structure and frequency distribution. Understanding these
dynamics is essential for predicting and controlling sudden transitions
in real-world systems, such as neural network synchronization, power
grids stability, and coordinated social behaviors. This knowledge can
inform the design of more resilient infrastructures and strategies for
mitigating risks associated with abrupt changes in system dynamics.
For example, in power grid design, insights from this study could help
engineers develop strategies to prevent cascading failures by predicting
and mitigating sudden synchronization events. In neuroscience, this
knowledge can improve our understanding of neural synchronization
associated with certain brain disorders, potentially leading to better
diagnostic tools or treatments. For instance, explosive synchronization
has been proposed as a potential mechanism underlying the hypersensi-
tive brain in fibromyalgia, where a small perturbation to a network can
lead to an abrupt state transition [24]. Furthermore, in social network
analysis, recognizing the conditions that lead to rapid shifts in collec-
tive behavior can aid in managing information spread or controlling
panic during crises.
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Fig. 3. Synchronization in all-to-all network with bimodal uniform frequency distribution: 1 < 𝜔𝑖 < 2 and −2 < 𝜔𝑖 < −1. Each sub-cluster gets synchronized independently, leading
to an intermediate overall order parameter.
Fig. 4. Correlation matrix for different coupling constant in all-to-all network with symmetric bimodal uniform distribution. −2 < 𝜔𝑖 < −1 and 1 < 𝜔𝑖 < 2 and different coupling
strength 𝜆. The couplings from left to right in the first row are 𝜆 = 0.1, 0.8, 1.2 and in the second row: 𝜆 = 1.4, 2.4, 3.6..
Future research could explore the effects of different network topolo-
gies, such as small-world or random networks, to see how these
structures influence two-step and explosive synchronization. Noise has
a significant influence on the dynamics of synchronization in Kuramoto
mode, as noted in previous studies [25]. Further research could incor-
porate the effect of noise in frequency-weighted model to investigate
the effect on the stability of intermediate states and to gain insights
into the robustness of synchronization against external perturbations.
Another valuable direction would be to apply these findings to real-
world data, such as analyzing power grid failures, brain wave patterns
in neural disorders, or behavioral synchronization in social networks,
to validate the theoretical models and enhance practical understanding.
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Appendix. Analytical solution

The analytical solution for frequency weighted Kuramoto model has
been done in [22] using a mean-field approach, a critical equation for
bimodal Lorentz distribution is obtained as follows:

2𝜋
𝑘

= ln

√

1 + 𝛿2
𝜆

[
(1 − 𝜆)𝜆

(1 − 𝜆)2 + 𝛿2
+

(1 + 𝜆)𝜆
(1 + 𝜆)2 + 𝛿2

]. (A.1)

By solving this equation, the critical coupling is found to be:
4

√

1 + 𝛿2
. (A.2)

In which 𝛿 is
𝜔0
𝛾

. By doing so, for 𝛾 = 0.1 the critical coupling will be
0.87, for 𝛾 = 0.5, 1.79 and for 𝛾 = 2, 2.83.

For the backward phase transition, using the self-consistency
method, the mean-field equation
𝑑𝜃𝑖
𝑑𝑡

= 𝜔𝑖 + 𝑘|𝜔𝑖| sin(𝜓 − 𝜃𝑖) (A.3)

In the stationary state, the system splits into two synchronous
clusters having the same phase (arcsin 1 ) with opposite sign, provided
𝑘𝑟
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that 𝑔(𝜔) is symmetric and centered around zero. The order parameter
then will be:

𝑟 = (𝑒𝑖𝜃𝑝 + 𝑒𝑖𝜃𝑛 )∕2 = 𝑐𝑜𝑠(𝜃𝑝) =
√

1 − ( 1
𝑘𝑟

)2 (A.4)

Then two branches of r are:

1(𝑘) =

√

2
2

√

1 +
√

1 − 4∕𝑘2 (A.5)

𝑟2(𝑘) =

√

2
2

√

1 −
√

1 − 4∕𝑘2 (A.6)

Being 𝑟1 stable and 𝑟2 unstable solutions. In the case of the scale-free
etwork, for both narrow and wide frequency distributions, the system
hows a continuous transition to the synchronized state but persisting
o stay in the disordered state in the case of wide peaks.
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