
Computers and Chemical Engineering 192 (2025) 108899 

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Physics-informed neural networks for dynamic process operations with
limited physical knowledge and data
Mehmet Velioglu a,b, Song Zhai e, Sophia Rupprecht a,f, Alexander Mitsos c,a,d, Andreas Jupke e,
Manuel Dahmen a,∗

a Institute of Climate and Energy Systems, Energy Systems Engineering (ICE-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
b RWTH Aachen University, Aachen 52062, Germany
c JARA-ENERGY, Jülich 52425, Germany
d RWTH Aachen University, Process Systems Engineering (AVT.SVT), Aachen, 52074, Germany
e RWTH Aachen University, Fluid Process Engineering (AVT.FVT), Aachen 52074, Germany
f Delft University of Technology, 2629 HZ, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Physics-informed neural networks
Chemical engineering
Dynamic process modeling
State estimation
Van de Vusse reaction
Liquid–liquid separator

A B S T R A C T

In chemical engineering, process data are expensive to acquire, and complex phenomena are difficult to fully
model. We explore the use of physics-informed neural networks (PINNs) for modeling dynamic processes
with incomplete mechanistic semi-explicit differential–algebraic equation systems and scarce process data. In
particular, we focus on estimating states for which neither direct observational data nor constitutive equations
are available. We propose an easy-to-apply heuristic to assess whether estimation of such states may be
possible. As numerical examples, we consider a continuously stirred tank reactor and a liquid–liquid separator.
We find that PINNs can infer immeasurable states with reasonable accuracy, even if respective constitutive
equations are unknown. We thus show that PINNs are capable of modeling processes when relatively few
experimental data and only partially known mechanistic descriptions are available, and conclude that they
constitute a promising avenue that warrants further investigation.
1. Introduction

Dynamic operation and control of chemical and biotechnological
processes are essential for efficient and sustainable production. Math-
ematical models describing the behavior of such processes are often
classified concerning their degree of reliance on physical/chemical
knowledge or data into three categories: (1) white-box or first-principle
or mechanistic models, (2) black-box or data-driven models, and (3)
gray-box or hybrid models (Zendehboudi et al., 2018; Marquardt,
1996).

Black-box modeling relies on (measurement) data to establish a
predictive relation between process inputs and outputs, thus avoid-
ing the need for a mechanistic process description. In recent years,
approaches involving deep neural networks (DNNs) have become par-
ticularly prominent data-driven models for process operations. DNNs
can model nonlinear dependencies between multiple inputs and out-
puts (Goodfellow et al., 2016) but require extensive training data
and often fail to make physically consistent predictions in scientific
or engineering applications (Zendehboudi et al., 2018). In contrast,
mechanistic process models are based on the governing physical and
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chemical laws of a system and suitable constitutive equations and
comprise relatively few parameters that need to be estimated from
data (von Stosch et al., 2014). They typically allow for physically
consistent predictions. However, in chemical and biotechnological pro-
cesses, complex phenomena such as reaction kinetics, coalescence, or
sedimentation often lack a rigorous mathematical description, hinder-
ing the mechanistic modeling of such processes (Kahrs and Marquardt,
2008). Hybrid modeling combines mechanistic and data-driven mod-
eling and aims to take advantage of the respective strengths and
mitigate the respective weaknesses of the two approaches. Compared
to purely data-driven models, suitably-designed hybrid models require
less training data, make physically more consistent predictions, and
(thus) extrapolate to a higher extent (Kahrs and Marquardt, 2007).

Hybrid models have been used extensively to model dynamic pro-
cess operation problems if complete system knowledge is unavail-
able (Roffel and Betlem, 2006) and thus have become a crucial model-
ing tool for numerous tasks related to chemical process control (Asprion
et al., 2019). Various types of hybrid model structures have been
proposed over the years in the process systems engineering (PSE) com-
munity, with the sequential approach and the parallel approach being
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the most prominent structures. For instance, Psichogios and Ungar
(1992) studied incorporating an artificial neural network to predict
states lacking a constitutive description inside an otherwise mechanistic
model for a fed-batch bioreactor (sequential approach). Su et al. (1992)
roposed to correct the mismatch between a white-box model and
rocess data from a polymer reaction system by a neural network
parallel approach). The parallel approach can also be combined with
he sequential approach, i.e., a second mechanistic model is added after
he parallel hybrid model to enforce physically consistent predictions,
ee, e.g., Thompson and Kramer (1994). Recently, the popularity of
ybrid modeling in chemical engineering has been increasing again due
o advancements in machine learning and the rise of digital twins in

smart manufacturing (Yang et al., 2020). Some notable contemporary
works on hybrid modeling are dedicated to the estimation of (spatio-
temporally varying parameters, which is related to the estimation of

states with missing constitutive equations, the main topic of our article.
pecifically, Shah et al. (2022) estimate time-varying parameters in
ermentation processes, Pahari et al. (2024) estimate spatio-temporally

varying diffusivity in a reaction–diffusion model, and Sitapure and
ang-Il Kwon (2023) estimate kinetic parameters in a batch crystalliza-
ion process with a transformer architecture. For further applications of
ybrid modeling in chemical engineering, we refer the reader to review
apers by Sansana et al. (2021), Yang et al. (2020), Sharma and Liu

(2022) and Schweidtmann et al. (2021).
Physics-based regularization of DNNs gives rise to so-called physics-

informed neural networks (PINNs), which have some similarities to
hybrid models but are better regarded as a special variant of a data-
driven model that is trained with available physical laws as con-
straints (Bradley et al., 2022). Specifically, in a PINN, the DNN acts
as the sole prediction model, but it is informed about governing phys-
cal laws during training through additional terms in the loss func-
ion (Nabian and Meidani, 2019; Karniadakis et al., 2021). In contrast,

hybrid models have distinct mechanistic and data-driven sub-models
which jointly produce a prediction (Bradley et al., 2022; Schweidtmann
et al., 2024).

The origins of physics-based regularization date back to (at least)
the works of Lagaris et al. (1998) on solving ordinary and partial
differential equations using neural networks (NNs) as universal func-
ion approximators. This approach was originally not taken up widely,
ikely due to the general limitations of NN training at that time.
owever, Raissi et al. (2019) recently revisited the physics-based regu-

larization approach using modern algorithms and tools for training and
introduced the term PINN.

The original PINN architectures (Raissi et al., 2019; Nascimento
et al., 2020) did not account for varying initial/boundary conditions
or control inputs. However, Antonelo et al. (2021) showed that adding
ontrol inputs and initial conditions to the NN makes the PINN ap-
roach suitable for control applications. Another application of PINNs
or control purposes was proposed by Arnold and King (2021), who

pursued a state-space modeling approach based on PINNs, including
initial conditions as inputs to the NN. However, separate networks are
trained for each discretized control actuation instead of adding control
inputs to the network.

Recently, PINNs have also seen a surge in chemical engineering
applications, mainly in the form of physics-informed recurrent neural
networks (Zheng et al., 2023). For instance, they have been applied
n conjunction with model predictive control (MPC) to a continuously
tirred tank reactor (CSTR) (Zheng et al., 2023) and a batch crys-
allization process (Wu et al., 2023), to control systems with noisy
ata (Alhajeri et al., 2022) and parametric uncertainty (Zheng and
u, 2023), and to fluid flow problems, most notably flow field pre-

diction in cyclone separators (Queiroz et al., 2021) and a Van de Vusse
STR (Choi et al., 2022). Ji et al. (2021) developed PINNs that can

address stiff chemical kinetic problems.
While studies have shown that PINNs are promising model can-

didates for chemical engineering applications, open questions remain
2 
about their utility for state estimation. In general, state estimation is
oncerned with estimating the state of a given process utilizing mea-
urement data and a mathematical process model (Barfoot, 2017; Gelb

et al., 1974). State estimation is often performed with filtering tech-
niques, e.g., the Kalman filter (Kalman, 1960a), which have recently
also been combined with PINNs, see, e.g., Tan et al. (2023) and Arnold
and King (2021). PINNs have also been used to estimate unmeasured
tates directly, i.e., without the use of a state estimation technique. For
nstance, Raissi et al. (2020) estimated velocity and pressure fields from

the concentration data of a passive scalar from flow field visualizations,
using Navier Stokes equations as the physics knowledge. Recently, Wu
t al. (2023) showed that PINNs with partial physics knowledge can

estimate immeasurable states in a batch crystallization process by using
he known governing equations of these states. The question, however,
emains whether PINNs can estimate states for which neither direct
bservational data nor constitutive equations are available.

In the present work, we thus set out to answer the following
two questions: (i) Can PINNs estimate immeasurable process states
or which constitutive equations are not known? (ii) Under which
onditions can we expect this to work? To this end, we will first con-
eptualize PINN-based dynamic process models in a setting of partially
nown mechanistic equations as well as measured and unmeasured
rocess states. Specifically, we consider systems that (i) can be de-
cribed by differential–algebraic equations (DAEs) in principle, (ii) for
hich only partial mechanistic knowledge in the form of some known

quations is available, and (iii) for which process data for some states
s available. Regarding the PINN modeling, we follow the standard
pproach, as it was first introduced by Raissi et al. (2019), but with the
xtensions to initial states and control inputs by Antonelo et al. (2021).
e propose the use of an incidence matrix as an easy-to-apply heuristic

o a priori evaluate whether estimation of unmeasured states with a
INN may be possible. We then perform extensive numerical studies by
sing two fully-known mechanistic models to emulate situations where
ome, but not full, mechanistic knowledge is available for modeling
urposes. Specifically, we study a CSTR model with Van de Vusse
eaction from the literature (van de Vusse, 1964) and a liquid–liquid

separator for which we develop a model by extending the model
from Backi et al. (2018, 2019). We follow an in-silico approach to
generate process data, i.e., we use the full-order mechanistic model,

hich in a real situation would not be available, to generate synthetic
observational data. Controlling the amount and diversity of training
data allows us to run extensive numerical experiments on the fitting
and generalization capabilities of PINNs as well as vanilla neural net-
work benchmark models, i.e., multilayer perceptrons. Following the
axonomy of process quantities and model equations by Marquardt

(1996), we distinguish balance equations and constitutive equations
and emulate situations with different degrees of mechanistic knowledge
available for PINN model development.

The paper is structured as follows: Section 2 presents the proposed
pproach for PINN-based dynamic process modeling with incomplete

physical knowledge, and our heuristic for assessing the state estimation
capabilities of a PINN. Section 3 provides numerical examples and
results for the CSTR, focusing on the physics-informed part of the
INN by varying the amount of physical knowledge provided. Section 4

provides numerical examples and results for the liquid–liquid separator,
focusing on the data-driven part of the PINN by varying the number
of measured properties provided as NN inputs. In all examples, the
empirical findings are related to the results from the heuristic. Section 5
discusses the conclusion and future work.

2. Methods

2.1. Preliminaries

Raissi et al. (2019) introduced PINNs to find data-driven solutions to
partial differential equations (PDEs) utilizing DNNs. In their approach,
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Fig. 1. Relationship between PINN time 𝑡 and process time 𝜏: The PINN time domain [0, 𝑇 ] corresponds to the length of a step-wise constant control input. In general, PINN time 𝑡
differs from process time 𝜏 and chaining of model predictions is required to simulate longer periods of time. Only if the control input is constant over the entire process duration,
𝑡 and 𝜏 coincide. Measurements can come from an irregular grid.
they employ the NN to approximate the solution of a PDE problem.
The inputs to the DNN are the spatio-temporal coordinates, and the
DNN outputs are the states of the dynamic system. The DNN is trained
in a semi-supervised manner, e.g., with small amounts of labeled data,
i.e., process data with corresponding input/output relations, and large
amounts of unlabeled data, i.e., collocation points in time and space
where residuals of governing equations, i.e., the PDEs, are computed.
These residuals constitute a loss term that penalizes the deviations of
the DNN outputs from the governing equations. Thus, PINNs can learn
to obey the physical laws of the system.

In their original form, PINNs do not account for control vari-
ables. The extension to control applications is, however, straightfor-
ward: Antonelo et al. (2021) added the control variable(s) and initial
states as NN inputs. Considering initial states as network inputs means
that the PINN model can be trained for various samples of initial states
and control variables, facilitating extensive coverage of the state and
control action spaces. The time domain of the PINN can be chosen
according to the needs of the control scheme, e.g., in MPC applications,
step-wise constant control inputs are often used. Thus, if the PINN
time domain [0, 𝑇 ] corresponds to the length of a step-wise constant
control input, the control inputs from the perspective of the NN are not
functions of time but constants. It is therefore, in general, necessary to
distinguish PINN time 𝑡 from process time 𝜏 and to chain the PINN
predictions in order to simulate longer periods involving changing
control inputs (cf. Fig. 1). Note that in the numerical examples in
Sections 3 and 4, for the sake of a simple implementation, we study
varying control inputs which are however kept constant throughout
the entire process duration, thus implying 𝑡 = 𝜏. For further details on
including control actions into PINNs, we refer the reader to Antonelo
et al. (2021) for integrating PINNs into MPC.

2.2. PINN-based dynamic process modeling with partial physical knowledge

We consider the scenario where a partial mechanistic process model
is available that can be used for physics-based regularization of a NN.
We assume that this partial process model comes in the form of a semi-
explicit differential–algebraic equation (DAE) system (Brenan et al.,
1996):

�̇�(𝑡) = 𝒇 (𝐱(𝑡), 𝐲(𝑡),𝐮), (1a)

𝟎 = 𝒈(𝐱(𝑡), 𝐲(𝑡),𝐮) (1b)

Here, 𝐱(𝑡) ∈ R𝑛𝑥 is the differential states vector, 𝐲(𝑡) ∈ R𝑛𝑦 is the
algebraic states vector, and 𝐮 ∈ R𝑛𝑢 is the control inputs vector. The
dot symbol (.) denotes a time derivative. 𝒇 denotes the right-hand side
(RHS) of the ordinary differential Eq. (1a), and 𝒈 is the RHS of the
algebraic Eq. (1b).

In a practical setting, some states might be impossible to measure
(immeasurable), e.g., reaction rate constants, or some states might
be impractical/expensive to measure, e.g., concentrations. The term
3 
unmeasured states covers both of these types and will be used through-
out this work. We aim to estimate unmeasured process states with
the available partial mechanistic knowledge and measurement data on
other measured states. To this end, we sub-categorize the differential
and algebraic states into measured and unmeasured states, using su-
perscripts 𝑚 and 𝑢, respectively. This is a special case of the more
general output equations used in observability analysis and control, see,
e.g., Lee and Markus (1967).

To predict the measured states 𝐱𝑚(𝑡) ∈ R𝑛𝑥𝑚 , 𝐲𝑚(𝑡) ∈ R𝑛𝑦𝑚 and to
estimate the unmeasured states 𝐱𝑢(𝑡) ∈ R𝑛𝑥𝑢 , 𝐲𝑢(𝑡) ∈ R𝑛𝑦𝑢 , we use the
neural network 𝐍𝐍𝐰,𝐛 with weights 𝐰 and biases 𝐛, i.e., [�̂�(𝑡), �̂�(𝑡)] =
𝐍𝐍𝐰,𝐛(𝑡, 𝐱𝑚(𝑡0),𝐮), where �̂�(𝑡) and �̂�(𝑡) denote the NN predictions of the
differential and algebraic states, respectively. The network inputs are
the time 𝑡, the initial values of the measured differential states 𝐱𝑚(𝑡0),
and the control inputs 𝐮. The NN parameters 𝐰 and 𝐛 can be learned by
minimizing the mean squared error loss, similar to Raissi et al. (2019)
and Antonelo et al. (2021):

𝑀 𝑆 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑀 𝑆 𝐸𝑑 𝑎𝑡𝑎 + 𝜆1𝑀 𝑆 𝐸𝑝ℎ𝑦𝑠𝑖𝑐 𝑠 + 𝜆2𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡, (2a)

𝑀 𝑆 𝐸𝑑 𝑎𝑡𝑎 = 1
𝑛𝑥𝑚𝑁𝑑

𝑁𝑑
∑

𝑗=1
(�̂�𝑚(𝑡𝑗 ) − 𝐱𝑚(𝑡𝑗 ))2+

1
𝑛𝑦𝑚𝑁𝑑

𝑁𝑑
∑

𝑗=1
(�̂�𝑚(𝑡𝑗 ) − 𝐲𝑚(𝑡𝑗 ))2,

(2b)

𝑀 𝑆 𝐸𝑝ℎ𝑦𝑠𝑖𝑐 𝑠 = 1
𝑛𝑥𝑁𝑒

𝑁𝑒
∑

𝑗=1

( ̇̂𝐱(𝑡𝑗 ) − 𝒇 (�̂�(𝑡𝑗 ), �̂�(𝑡𝑗 ),𝐮𝑗 )
)2 +

𝜆𝑔
𝑛𝑦𝑁𝑒

𝑁𝑒
∑

𝑗=1

(

𝒈(�̂�(𝑡𝑗 ), �̂�(𝑡𝑗 ),𝐮𝑗 )
)2 ,

(2c)

𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡 =
1

𝑛𝑥𝑚𝑁𝑖

𝑁𝑖
∑

𝑗=1
(�̂�𝑚𝑗 (𝑡0) − 𝐱𝑚𝑗 (𝑡0))

2 (2d)

Here, 𝑀 𝑆 𝐸𝑑 𝑎𝑡𝑎 corresponds to the loss term accounting for the
measurement data, 𝑀 𝑆 𝐸𝑝ℎ𝑦𝑠𝑖𝑐 𝑠 corresponds to the loss term that is
computed with the available physics knowledge (Eqs. (1a) and (1b)),
and 𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡 corresponds to a loss term that describes the mismatch
between the NN predictions at 𝑡 = 𝑡0 and the initial values 𝐱𝑚𝑗 (𝑡0). 𝑁
denotes the number of data points. Note that the subscript 𝑗 refers
to finitely many samples taken at times 𝑡𝑗 , with corresponding initial
values 𝐱𝑚𝑗 (𝑡0) and control actions 𝐮𝑗 . We omit the latter two from the no-
tation for simplicity. The subscripts 𝑑, 𝑒, and 𝑖 correspond to data points
associated with 𝑀 𝑆 𝐸𝑑 𝑎𝑡𝑎, 𝑀 𝑆 𝐸𝑝ℎ𝑦𝑠𝑖𝑐 𝑠, and 𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡, respectively.

𝜆1 and 𝜆2 denote the weights of the physics and initial condition
loss terms, respectively, and 𝜆𝑔 establishes a weighting between the
algebraic and the differential equations in the physics loss term.

Note that for the calculation of 𝑀 𝑆 𝐸𝑝ℎ𝑦𝑠𝑖𝑐 𝑠 and 𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡 no mea-
surement data are needed. For 𝑀 𝑆 𝐸𝑝ℎ𝑦𝑠𝑖𝑐 𝑠, we calculate the physics
residuals using Eqs. (1a) and (1b) at randomly sampled time points



M. Velioglu et al.

𝑥

Computers and Chemical Engineering 192 (2025) 108899 
Fig. 2. PINN-based dynamic process model with semi-explicit DAE physics model.
𝑡 = 𝑡𝑗 . For 𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡, we train the NN predictions �̂�𝑚(𝑡 = 𝑡0) to comply
with the initial values 𝐱𝑚(𝑡0), again for randomly sampled values in a
given range. A general network schematic of the PINN is given in Fig. 2.

2.3. Heuristic for assessing PINN state estimation capabilities

We propose a heuristic to a priori assess whether a PINN may be
capable of estimating unmeasured process states by drawing inspira-
tions from DAE solvability analysis, see, e.g., Brenan et al. (1996). Our
conjecture is that the PINN can leverage training data, i.e., samples
for 𝐱𝑚(𝑡𝑗 ) and 𝐲𝑚(𝑡𝑗 ), to ‘‘solve’’ the known Eqs. (1a) and (1b) for
the unknown states 𝐱𝑢(𝑡𝑗 ) and 𝐲𝑢(𝑡𝑗 ) at a point 𝑡𝑗 . Specifically, our
heuristic mimics structural index analysis by means of an incidence
matrix (Duff and Gear, 1986; Gani and Cameron, 1992; Unger et al.,
1995). In our PINN incidence matrix, the rows represent the RHSs of
the known physics equations, i.e., 𝒇 and 𝒈 (see Eqs. (1a) and (1b)), and
the columns represent the unmeasured process states 𝐱𝑢 and 𝐲𝑢. Each
occurrence of an unmeasured state in 𝒇 and 𝒈 is indicated by drawing a
cross (×) in the corresponding entry of the matrix. Note that the PINN
uses AD to compute ̇̂𝐱, i.e., the derivative of the NN outputs �̂�(𝑡) with
respect to the NN input 𝑡. Moreover, the NN learns to assemble state
trajectories from the data provided at distinct time points 𝑡𝑗 , and thus,
it implicitly learns time-derivatives of the states. Consequently, we do
not consider �̇�, i.e., the left-hand side (LHS) of Eqs. (1a), as unknowns
but restrict our analysis to the RHSs 𝒇 and 𝒈 where no time-derivatives
appear (see Eqs. (1a) and (1b)). This implies that we do not consider
̇ 𝑗 as an occurrence of 𝑥𝑗 when we assemble the incidence matrix.

We conjecture that the incidence matrix having a full-column rank,
i.e., if exactly one cross in each column can be marked with a circle
without marking more than one cross in a single row, constitutes
an indicator for possible state estimation. A simple example of an
incidence matrix for a PINN is given in Table 1. Note that an inci-
dence matrix having more equations than unmeasured states, i.e., more
rows than columns, is not a concern in itself. In fact, each additional
equation may provide additional regularization to the NN and thus
may be regarded as beneficial. We stress that the incidence matrix
is a heuristic, i.e., it represents neither a necessary nor a sufficient
condition for state estimation with a PINN (see Sections SM5 and SM6
of the Supplementary Materials), and thus, it can give wrong results.
Note that for fully-specified dynamic systems, necessary and sufficient
criteria for observability analysis exist, see, e.g., Lee and Markus (1967)
and Kou et al. (1973), based on trajectory information. Since we have
an incomplete physics model, we instead construct the heuristic with
a point-wise analysis, similar to the solvability analysis of equation
systems (Brenan et al., 1996; Duff and Gear, 1986; Gani and Cameron,
4 
1992; Unger et al., 1995). The practical construction and interpretation
of the incidence matrix are demonstrated extensively in Sections 3 and
4.

2.4. Vanilla NN benchmark models

To compare the predictions of a PINN model with a purely data-
driven benchmark, we choose a feed-forward artificial neural network
(ANN), as ANNs are widely used and can have a similar network archi-
tecture as the PINN model, thus allowing us to study the effects of the
physics-based regularization. To make the comparison as meaningful
as possible, we use the same hyperparameters and training scheme
for the PINN model and the vanilla ANN model. Still, the network
architecture for the vanilla ANN is slightly different from that of the
PINN in the sense that only the measured states can be network outputs,
as no process data is available for the unmeasured states. We use the
following loss function to train the vanilla ANN, omitting the physics-
based regularization term in Eq. (2a) but keeping the loss term for the
initial conditions:

𝑀 𝑆 𝐸 = 𝑀 𝑆 𝐸𝑑 𝑎𝑡𝑎 + 𝜆1𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡,

𝑀 𝑆 𝐸𝑑 𝑎𝑡𝑎 = 1
𝑛𝑥𝑚𝑁𝑑

𝑁𝑑
∑

𝑗=1
(�̂�𝑚(𝑡𝑗 ) − 𝐱𝑚(𝑡𝑗 ))2 +

1
𝑛𝑦𝑚𝑁𝑑

𝑁𝑑
∑

𝑗=1
(�̂�𝑚(𝑡𝑗 ) − 𝐲𝑚(𝑡𝑗 ))2,

𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡 =
1

𝑛𝑥𝑚𝑁𝑖

𝑁𝑖
∑

𝑗=1
(�̂�𝑚𝑗 (𝑡0) − 𝐱𝑚𝑗 (𝑡0))

2

3. Numerical example 1: Van de Vusse reactor

We use the Van de Vusse (van de Vusse, 1964) CSTR, a common
benchmark problem in the literature on nonlinear control applica-
tions (Chen et al., 1995), to investigate generalization, state estima-
tion, and extrapolation capabilities of the PINN models under varying
amounts of physical knowledge provided through physics equations.
Thus, we focus on the physics regularization aspect of the PINN.

The van de Vusse reaction scheme reads:

A
k1

←←←←←←←←←←←←←←←←←→ B
k2

←←←←←←←←←←←←←←←←←→ C,

2 A k3
←←←←←←←←←←←←←←←←←→ D.

Substance 𝐴 is fed to the reactor with concentration 𝑐𝐴,𝑖𝑛 and tempera-
ture 𝑇𝑖𝑛. Substance 𝐵 is the desired product, whereas substances 𝐶 and
𝐷 are unwanted byproducts. Heat is removed from the cooling jacket
fluid with rate �̇�𝐾 by an external heat exchanger. The schematic of
the CSTR is given in Fig. 3. The dynamics of the reactor are given by
the following nonlinear equations derived from component balances for
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Table 1
Incidence matrix for a PINN with a semi-explicit DAE physics model: Measurement data for training is
available for 𝑥𝑚1 only. The unmeasured states 𝑥𝑢2 and 𝑦𝑢 shall be estimated from the data on 𝑥𝑚1 . The cross
(✕) denotes the occurrence of an unmeasured state in a physics equation. The incidence matrix has full-
column rank, as it is possible to mark exactly one cross in each column without marking more than one
cross in a single row.

Known physics model (semi-explicit DAE)
(a): �̇�𝑚1 = 𝑥𝑚1 + 𝑥𝑢2
(b): �̇�𝑢2 = 3𝑥𝑚1
(c): 0 = 𝑥𝑚1 𝑥

𝑢
2 + 𝑦𝑢

Incidence matrix
[𝒇 , 𝒈] ↓ [𝐱𝑢 , 𝐲𝑢] → 𝑥𝑢2 𝑦𝑢

(a) ⊗

(b)

(c) ✕ ⊗
S

a
M
c

[

m
i

Fig. 3. Schematic representation of the van de Vusse CSTR.

substances 𝐴 and 𝐵 and energy balances for the reactor and the cooling
jacket (Chen et al., 1995):

�̇�𝐴(𝑡) =
�̇� (𝑡)
𝑉𝑅

(𝑐𝐴,𝑖𝑛 − 𝑐𝐴(𝑡)) − 𝑘1(𝑇 )𝑐𝐴(𝑡) − 𝑘3(𝑇 )𝑐𝐴(𝑡)2, (3a)

�̇�𝐵(𝑡) = − �̇� (𝑡)
𝑉𝑅

𝑐𝐵(𝑡) + 𝑘1(𝑇 )𝑐𝐴(𝑡) − 𝑘2(𝑇 )𝑐𝐵(𝑡), (3b)

�̇� (𝑡) = �̇� (𝑡)
𝑉𝑅

(𝑇𝑖𝑛 − 𝑇 (𝑡)) − 1
𝜌𝐶𝑝

[𝑘1(𝑇 )𝑐𝐴(𝑡)𝛥𝐻𝐴𝐵 + 𝑘2(𝑇 )𝑐𝐵(𝑡)𝛥𝐻𝐵 𝐶

+ 𝑘3(𝑇 )𝑐𝐴(𝑡)2𝛥𝐻𝐴𝐷] +
𝑘𝑤𝐴𝑅
𝜌𝐶𝑝𝑉𝑅

(𝑇𝐾 (𝑡) − 𝑇 (𝑡)),
(3c)

̇𝐾 (𝑡) = 1
𝑚𝐾𝐶𝑝𝐾

[�̇�𝐾 (𝑡) + 𝑘𝑤𝐴𝑅(𝑇 (𝑡) − 𝑇𝐾 (𝑡))] (3d)

Here, 𝑐𝐴(𝑡) and 𝑐𝐵(𝑡) denote the concentrations of substances A and B,
𝑇 (𝑡) is the reactor temperature, and 𝑇𝐾 (𝑡) is the cooling jacket temper-
ature, assumed to be uniform in space. The aforementioned quantities
correspond to the differential states 𝐱 of the Van de Vusse CSTR,
i.e., 𝐱 = [𝑐𝐴, 𝑐𝐵 , 𝑇 , 𝑇𝐾 ]𝑇 . The flow rate �̇� (𝑡), and the heat transfer rate by
the coolant �̇�𝐾 (𝑡) (heat removal) are the manipulated variables. Note
that the dot notation in �̇� (𝑡) and �̇�𝐾 (𝑡) indicates flow rates (as opposed
to time derivatives). The reaction rate constants 𝑘𝑖(𝑇 ) correspond to the
algebraic states 𝐲 and are calculated using the Arrhenius equation:

𝑘𝑖(𝑇 ) = 𝑘𝑖0 exp(
𝐸𝑎,𝑖

𝑇
), 𝑖 = 1, 2, 3 (4)

All parameters listed in Eqs. (3) and (4) are given in Table 2.
During our preliminary tests, we observed that having values in

a similar order of magnitude for the different PINN inputs and out-
uts improves the training stability and performance. However, when
ormalizing the outputs, the PINN physics equations must be scaled ac-
ordingly. Thus, we decided to make the time, states, and manipulated
ariables dimensionless and use dimensionless equations to calculate
he physics loss. We give the dimensionless variables and equations
5 
Table 2
Parameters for the van de Vusse CSTR.
ource: Taken from Chen et al. (1995).
Parameter Symbol Value

inlet molar flow rate of substance A 𝑐𝐴,in 5.10 mol/L
inlet temperature 𝑇in 378.1 K
collision factor for reaction 1 𝑘10 1.287×1012 1/h
collision factor for reaction 2 𝑘20 1.287×1012 1/h
collision factor for reaction 3 𝑘30 9.043×109 L/(mol h)
activation energy for reaction 1 𝐸𝑎,1 −9758.3 K
activation energy for reaction 2 𝐸𝑎,2 −9758.3 K
activation energy for reaction 3 𝐸𝑎,3 −8560 K
enthalpy of reaction 1 𝛥𝐻𝐴𝐵 4.2 kJ/molA
enthalpy of reaction 2 𝛥𝐻𝐵 𝐶 −11.0 kJ/molB
enthalpy of reaction 3 𝛥𝐻𝐴𝐷 −41.85 kJ/molA
density 𝜌 0.9342 kg/L
heat capacity 𝐶𝑃 3.01 kJ/(kg K)
heat capacity of coolant 𝐶𝑃 𝐾 2.00 kJ/(kg K)
heat transfer coefficient of cooling jacket 𝑘𝑤 4032 kJ/(h m2 K)
surface area of cooling jacket 𝐴𝑅 0.215 m2

reactor volume 𝑉𝑅 0.01 m3

coolant mass 𝑚𝐾 5.0 kg

in the Supplementary Materials. In addition, we normalize the PINN
inputs, i.e., we scale the input features to values between −1 and 1.

To investigate the effects of varying physical knowledge, we cre-
te three different PINN models with increasing physics knowledge.
oreover, we investigate the performance of a vanilla ANN model to fa-

ilitate a comparison between the PINN model and a purely data-driven
model. We list these models, the physics equations, the knowledge
supplied to the PINN model, and the measured and unmeasured states
in Table 3. Moreover, we give the network schematic of each model in
the Supplementary Materials.

3.1. Data set generation, training, and hyperparameter selection

We assume the operating ranges presented in Table 4, with a
selected time interval for step-wise control changes of 𝑇 = 60 s, i.e., 𝑡 ∈
0, 60] s. Data generation to calculate the physics loss term 𝑀 𝑆 𝐸𝑝ℎ𝑦𝑠𝑖𝑐 𝑠

and the initial condition loss term 𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡 in Eqs. (2) are done by
selecting 𝑁𝑒 = 10,000 collocation and 𝑁𝑖 = 100 initial value points.
This selection is done using Latin Hypercube sampling (Iman et al.,
1981).

For the process data generation, we use the explicit Runge–Kutta
ethod of order 5, utilizing solve_ivp solver from scipy.integrate module

n Python (Virtanen et al., 2020; Dormand and Prince, 1980). We
solve the full-order process model (Eqs. (3) and (4)) for time 𝑡 ∈
[0, 60] s with random inputs for 𝑐𝐴(𝑡0), 𝑐𝐵(𝑡0), 𝑇 (𝑡0), 𝑇𝐾 (𝑡0),

�̇�
𝑉𝑅

, �̇�𝐾

in the given ranges and keeping the manipulated variables �̇�
𝑉𝑅

and
�̇�𝐾 constant throughout the investigated process duration of 60 s, with
relative and absolute error of 1×10−13 and 1×10−16 respectively. We
output each process trajectory on an equidistant time grid with step-
size 𝛥𝑡 = 0.6 s. Note that 𝛥𝑡 = 0.6 s pertains to the granularity of
the training/testing trajectories; the PINN at the prediction phase can
make one-shot predictions for any time 𝑡 ∈ [0, 60] s. Moreover, the

training/testing trajectories could also be obtained from an irregular,
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Table 3
Physical knowledge and output configuration (measured and unmeasured process states) for the Van de Vusse CSTR PINN models. In PINN-C, 𝑇 and
𝑇𝐾 can also be unmeasured depending on the case study (cf. Section 3.4). The time dependence of the states is not shown explicitly for brevity. The
manipulated variables �̇�

𝑉𝑅
and �̇�𝐾 are the step-wise constant controls which we, for the sake of a simple implementation, keep constant throughout the

investigated process duration.
Model name Physics knowledge Physics equations Measured

process states
Unmeasured
process states

Vanilla ANN None None 𝑐𝐴, 𝑐𝐵 , 𝑇 , 𝑇𝐾 None

PINN-A Mole balances
with net reaction rates

�̇�𝐴 = �̇�
𝑉𝑅

(𝑐𝐴,𝑖𝑛 − 𝑐𝐴) + 𝑟𝐴

�̇�𝐵 = − �̇�
𝑉𝑅

𝑐𝐵 + 𝑟𝐵

𝑐𝐴, 𝑐𝐵 , 𝑇 , 𝑇𝐾 𝑟𝐴, 𝑟𝐵

PINN-B Mole and energy balances with
individual reaction rates

�̇�𝐴 = �̇�
𝑉𝑅

(𝑐𝐴,𝑖𝑛 − 𝑐𝐴) − 𝑟1 − 𝑟3

�̇�𝐵 = − �̇�
𝑉𝑅

𝑐𝐵 + 𝑟1 − 𝑟2

�̇� = �̇�
𝑉𝑅

(𝑇𝑖𝑛 − 𝑇 ) + 𝑘𝑤𝐴𝑅

𝜌𝐶𝑝𝑉𝑅
(𝑇𝐾 − 𝑇 )

− 1
𝜌𝐶𝑝

(𝑟1𝛥𝐻𝐴𝐵 + 𝑟2𝛥𝐻𝐵 𝐶 + 𝑟3𝛥𝐻𝐴𝐷)

�̇�𝐾 = 1
𝑚𝐾𝐶𝑝𝐾

(�̇�𝐾 + 𝑘𝑤𝐴𝑅(𝑇 − 𝑇𝐾 ))

𝑐𝐴, 𝑐𝐵 , 𝑇 , 𝑇𝐾 𝑟1, 𝑟2, 𝑟3

PINN-C Mole and energy balances with
reaction rate expressions (without
Arrhenius’ law)

�̇�𝐴 = �̇�
𝑉𝑅

(𝑐𝐴,𝑖𝑛 − 𝑐𝐴) − 𝑘1𝑐𝐴 − 𝑘3𝑐
2
𝐴

�̇�𝐵 = − �̇�
𝑉𝑅

𝑐𝐵 + 𝑘1𝑐𝐴 − 𝑘2𝑐𝐵

�̇� = �̇�
𝑉𝑅

(𝑇𝑖𝑛 − 𝑇 ) + 𝑘𝑤𝐴𝑅

𝜌𝐶𝑝𝑉𝑅
(𝑇𝐾 − 𝑇 )

− 1
𝜌𝐶𝑝

(𝑘1𝑐𝐴𝛥𝐻𝐴𝐵 + 𝑘2𝑐𝐵𝛥𝐻𝐵 𝐶 + 𝑘3𝑐
2
𝐴𝛥𝐻𝐴𝐷)

�̇�𝐾 = 1
𝑚𝐾𝐶𝑝𝐾

(�̇�𝐾 + 𝑘𝑤𝐴𝑅(𝑇 − 𝑇𝐾 ))

𝑐𝐴, 𝑐𝐵 , 𝑇 , 𝑇𝐾 𝑘1, 𝑘2, 𝑘3
∈

n

a

d
e
o

Table 4
Operating ranges for states and inputs in the Van de Vusse CSTR example. The lower
bound is denoted by lb, and the upper bound is denoted by ub. These values are chosen
to remain in the vicinity of a steady state. Extreme values refer to the minimum and
maximum values appearing in a generated trajectory.
Var iable Unit Initial value Extreme value

lb ub min max

𝑐𝐴 mol/L 2.14 2.57 1.74 2.74
𝑐𝐵 mol/L 0.87 1.09 0.87 1.28
𝑇 K 387 403 385 403
𝑇𝐾 K 371 386 371 395
�̇�
𝑉𝑅

(1/h) 5 28.4 5 28.4
�̇�𝐾 kJ/h −2227 0 −2227 0

i.e., non-equidistant, time grid. We create 𝑁𝑡𝑜𝑡𝑎𝑙 = 100 trajectories from
hich we select 𝑁𝑡𝑒𝑠𝑡 = 20 trajectories for testing. For training, we use
𝑡𝑟𝑎𝑖𝑛 trajectories, each one having 𝑁𝑚 = 101 data points. The total
umber of measurement points is thus 𝑁𝑑 = 𝑁𝑡𝑟𝑎𝑖𝑛𝑁𝑚. Specifically, we

create two training sets from the 80 trajectories that are not used for
the testing: First, we create a training set representing a low-data regime
consisting of only 𝑁𝑡𝑟𝑎𝑖𝑛 = 20 training trajectories. Second, we create a
raining set representing a high-data regime consisting of 𝑁𝑡𝑟𝑎𝑖𝑛 = 80
raining trajectories.

For the training, we use a hybrid strategy; we first start with the
Adam optimizer (Kingma and Ba, 2017) and then switch to the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm (Liu
nd Nocedal, 1989). L-BFGS typically provides more accurate results

for PINNs (Markidis, 2021); however, it tends to get stuck in a local
inimum if used directly (Markidis, 2021). Thus, Adam is first used to

avoid local minima, and then L-BFGS is used for fine-tuning following
the approach presented by Markidis (2021) and Jin et al. (2021) since
we could confirm their observation during our preliminary studies.

e use a dynamic weighting scheme to decide on the weights 𝜆𝑖
n Eq. (2), called inverse Dirichlet weighting (IDW) (Maddu et al.,

2022). For this purpose, we used code snippets from the GitHub repos-
tory of Maddu et al. (2022). In preliminary studies, we found IDW
6 
to yield decent results but did not perform a systematic comparison
of different weighting schemes. As evidenced by the results stated
below, the PINNs consistently outperform the corresponding vanilla
NN benchmark models. Thus, we refrained from further investigations
into different weighting schemes. As IDW only works with first-order
optimizers, we apply it only during the Adam optimization step and
then keep the final weights constant for the L-BFGS optimization step.
We start the training process with the Adam optimizer for 1000 epochs
with a learning rate of 0.001. After that, we utilize the L-BFGS opti-
mizer for 300 epochs. Mean squared error (MSE) is the metric used for
minimization.

To determine the architecture parameters of the PINN, we utilize a
grid search varying the following hyperparameters: activation function
 {t anh, sigmoid}, depth of the hidden layers ∈ {1, 2, 3, 4} and width

of hidden layers (number of nodes) ∈ {16, 32, 64, 128}. We investigate
all four models for both data regimes. The t anh activation function
performs best in all cases. Moreover, we find that the best-performing
width and depth of the hidden layers do not change across models but
with the amount of training data. For the low-data regime, we find
that a network with 2 hidden layers and 32 nodes performs the best. A
etwork with 2 hidden layers and 64 nodes performs best for the high-

data regime. The grid search is done with 5 randomly drawn data sets
and 5 runs for each data set to account for variations in training/test
split and weight initialization. Moreover, all the upcoming studies are
lso done using 5 data sets and 5 runs for each data set. The result of

a run is reported as the average error over 𝑁𝑡𝑒𝑠𝑡 = 20 trajectories.

3.2. Prediction of measured states

In this subsection, we investigate the generalization capabilities of
the different PINN models and the vanilla ANN model listed in Table 3.

As can be seen from Fig. 4, the prediction error for all states
ecreases with increasing physical knowledge supplied to the models,
xcept for the reactant concentration 𝑐𝐴 in the low-data regime. More-
ver, all PINN models perform better than the vanilla ANN model in

predicting measured states for both data regimes. A particularly inter-
esting result is that PINN-A performs better at estimating the measured
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Fig. 4. Test set error for the measured states for all models and data regimes. Boxplots show the results of 25 models (5 runs each for 5 data sets), averaged over the test set of
ach model. The error metric is the mean absolute percentage error (MAPE).
states 𝑇 and 𝑇𝐾 than the vanilla ANN, even though both models predict
these states only based on data, i.e., PINN-A does not have energy
alances, and 𝑇 and 𝑇𝐾 do not appear in the mole balances. A possible
xplanation could be that, since PINN-A has physics knowledge on 𝑐𝐴
nd 𝑐𝐵 , it reaches a lower loss value on 𝑐𝐴 and 𝑐𝐵 than the vanilla ANN
nd thus has more room to optimize for 𝑇 and 𝑇𝐾 .

We conclude that the PINN models show strong generalization
capabilities, better than the purely data-driven model, especially in the
low-data regime.

3.3. Algebraic state estimation

We now investigate if the PINN models can predict unmeasured
algebraic states 𝐲𝑢 with reasonable accuracy. First, we conduct an
incidence matrix analysis for each PINN model. shows that all PINN
models have a full-column rank incidence matrix, suggesting that state
estimation is possible in all cases.

Table 6 reports test errors for the unmeasured algebraic states.
ince the compared quantities are different for the different models, a
irect comparison between the models is not justified. However, we can
onclude that all models can predict the unmeasured algebraic states
ith acceptable accuracy (less than 10% mean absolute percentage
rror), except 𝑟3 in PINN-B. We also observe that the accuracy gap
etween the low and high data regimes decreases as the provided
hysics knowledge increases.

Note that the estimated algebraic states, i.e., the net reaction rates
(PINN-A), the individual reaction rates (PINN-B), and the reaction
ate constants (PINN-C), were not only unmeasured, i.e., no process
ata was used for training, but also their corresponding constitutive
quations were not provided. This example thus shows that PINNs
an, in certain situations, infer immeasurable states, even if respective
onstitutive equations are unknown.
7 
Table 5
Incidence matrices of PINN-A, PINN-B, and PINN-C for the Van
de Vusse reactor example. If an unmeasured state appears in
an equation, it is marked with a cross. Encircled crosses show
feasible assignments of states to equations.

(a) Incidence matrix of PINN-A. Matrix has
full-column rank.

[𝒇 , 𝒈] ↓ [𝐱𝑢 , 𝐲𝑢] → 𝑟𝐴 𝑟𝐵

Eqn. for �̇�𝐴 ⊗

Eqn. for �̇�𝐵 ⊗

(b) Incidence matrix of PINN-B. Matrix has
full-column rank.

[𝒇 , 𝒈] ↓ [𝐱𝑢 , 𝐲𝑢] → 𝑟1 𝑟2 𝑟3

Eqn. for �̇�𝐴 ⊗ ×

Eqn. for �̇�𝐵 × ⊗

Eqn. for �̇� × × ⊗

Eqn. for �̇�𝐾

(c) Incidence matrix of PINN-C. Matrix has
full-column rank.

[𝒇 , 𝒈] ↓ [𝐱𝑢 , 𝐲𝑢] → 𝑘1 𝑘2 𝑘3

Eqn. for �̇�𝐴 ⊗ ×

Eqn. for �̇�𝐵 × ⊗

Eqn. for �̇� × × ⊗

Eqn. for �̇�𝐾
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Table 6
Estimation accuracy for the unmeasured algebraic states 𝐲𝑢 on the test set for all PINN
models and data regimes. Results are averaged over 25 models (5 runs each for 5 data
ets). The error metric is the mean absolute percentage error (MAPE ).
Model Unmeasured

algebraic state
Low data regime High data regime

PINN − A 𝑟𝐴 4.71% 2.61%
𝑟𝐵 9.31% 5.12%

PINN − B
𝑟1 4.33% 3.43%
𝑟2 9.15% 7.27%
𝑟3 11.99% 10.42%

PINN − C
𝑘1 3.59% 2.90%
𝑘2 6.84% 6.13%
𝑘3 7.14% 6.98%

Table 7
Incidence matrices of PINN-C with 𝐱𝑢 = [𝑐𝐴]𝑇 , 𝐱𝑢 = [𝑇 ]𝑇 and 𝐱𝑢 = [𝑇𝐾 ]𝑇
for Van de Vusse reactor example. If an unmeasured state appears in
an equation, it is marked with a cross. Encircled crosses show feasible
assignments of states to equations.

(a) Incidence matrix of PINN-C with 𝐱𝑢 = [𝑐𝐴]𝑇
(setting 1). Matrix does not have full-column rank.

[𝒇 , 𝒈] ↓ [𝐱𝑢 , 𝐲𝑢] → 𝑐𝐴 𝑘1 𝑘2 𝑘3

Eqn. for �̇�𝐴 × × ×

Eqn. for �̇�𝐵 × × ×

Eqn. for �̇� × × × ×

Eqn. for �̇�𝐾

(b) Incidence matrix of PINN-C with 𝐱𝑢 = [𝑇 ]𝑇
(setting 2). Matrix has full-column rank.

[𝒇 , 𝒈] ↓ [𝐱𝑢 , 𝐲𝑢] → 𝑇 𝑘1 𝑘2 𝑘3

Eqn. for �̇�𝐴 ⊗ ×

Eqn. for �̇�𝐵 × ⊗

Eqn. for �̇� × × × ⊗

Eqn. for �̇�𝐾 ⊗

(c) Incidence matrix of PINN-C with 𝐱𝑢 = [𝑇𝐾 ]𝑇
(setting 3). Matrix has full-column rank.

[𝒇 , 𝒈] ↓ [𝐱𝑢 , 𝐲𝑢] → 𝑇𝐾 𝑘1 𝑘2 𝑘3

Eqn. for �̇�𝐴 ⊗ ×

Eqn. for �̇�𝐵 × ⊗

Eqn. for �̇� × × × ⊗

Eqn. for �̇�𝐾 ⊗

3.4. Differential state estimation

We study PINN-C and create three different settings to empirically
gauge the differential state estimation capabilities. In the first setting,

e assume that state 𝑐𝐴 is unmeasured i.e., 𝐱𝑢 = [𝑐𝐴]𝑇 . In the second
setting, 𝑇 is unmeasured, i.e., 𝐱𝑢 = [𝑇 ]𝑇 . In the third setting, 𝑇𝐾 is
unmeasured, i.e., 𝐱𝑢 = [𝑇𝐾 ]𝑇 . For all settings, the algebraic states 𝑘1,
𝑘2, and 𝑘3 are also unmeasured, i.e., 𝐲𝑢 = [𝑘1, 𝑘2, 𝑘3]𝑇 .

In the first setting, 𝐱𝑢 = [𝑐𝐴]𝑇 , we do not obtain a full-column rank
incidence matrix, as can be seen from Table 7a, whereas in the other
two settings we do (Tables 7b and 7c).

In Fig. 5, we see that the PINN model with 𝐱𝑢 = [𝑐𝐴]𝑇 (setting
1) indeed fails to estimate 𝑐𝐴, as indicated by the incidence matrix
(Table 7). In contrast, the MAPE values suggest that the PINN models
with 𝐱𝑢 = [𝑇 ]𝑇 (setting 2) and 𝐱𝑢 = [𝑇𝐾 ]𝑇 (setting 3) yield good
esults for the estimation of the respective unmeasured differential
tates 𝑇 and 𝑇𝐾 . However, when we compare the results to the case
here all differential states were measured (cf. Fig. 4), we see that

the MAPE values are about 20 times higher in case of 𝑇𝐾 , and around
5 times higher in case of 𝑇 . More importantly, as the ranges of 𝑇
 h

8 
Table 8
Ranges of the initial state 𝑐𝐴0 for the trajectories used in the training, test, and
extrapolation sets.

Set Initial State Lower bound Upper bound

Training set 𝑐𝐴0 2.14 𝑚𝑜𝑙
𝐿

2.57 𝑚𝑜𝑙
𝐿

Test set 𝑐𝐴0 2.14 𝑚𝑜𝑙
𝐿

2.57 𝑚𝑜𝑙
𝐿

Extrapolation set 𝑐𝐴0 1.71 𝑚𝑜𝑙
𝐿

2.14 𝑚𝑜𝑙
𝐿

and 𝑇𝐾 are quite low compared to the actual values (cf. Table 4), the
MAPE values can be deceptively low. Thus, as a more reliable measure
of goodness of fit, we evaluate the coefficient of determination (R2).
As can be seen from Fig. 6, the PINN-C model with 𝐱𝑢 = [𝑇 ]𝑇 can
uccessfully predict the unmeasured differential state 𝑇 , with R2 scores
bove 0.90. However, the PINN-C model with 𝐱𝑢 = [𝑇𝐾 ]𝑇 essentially

fails to estimate 𝑇𝐾 , with R2 scores ranging between 0.15 and 0.85.
In state estimation theory (Kalman, 1960b; Lee and Markus, 1967),

 system is called observable if the initial values of unmeasured states
can be estimated uniquely using the information on measured states
and a mathematical process model. In the particular example con-
sidered here, the initial state (and thus the trajectory) of 𝑇 can be
estimated uniquely by the PINN using the data on the measured states
and the built-in physical knowledge, whereas this is not the case for 𝑇𝐾 .
Transferring observability conditions for nonlinear dynamic models,
see, e.g., Lee and Markus (1967) and Kou et al. (1973), to PINNs is not
traightforward and thus considered beyond the scope of this paper.

3.5. Extrapolation capabilities

We now explore if the PINN can extrapolate beyond the bounds of
the process data supplied for training. For this purpose, we create a set
of test trajectories with the initial value of 𝑐𝐴0 out of the bounds of 𝑐𝐴0
in the training trajectories. We term this set extrapolation set. In Table 8,
respective ranges for the inputs 𝑐𝐴0 can be seen for training, test,
and extrapolation sets. In contrast to purely data-driven models, the
INNs may also learn the system dynamics from the physics residuals.

Nevertheless, we still expect a lower accuracy in the extrapolation
regime since we do not provide measurement data about that regime
during training.

As can be seen from Fig. 7, the test errors on both the test and the
extrapolation sets are much lower for the PINN models compared to the
vanilla ANN model. We also observe that PINN-C, the model with the
most physics knowledge, has the lowest difference in accuracy between
test and extrapolation sets. Thus, we conclude that the PINN models can
extrapolate better than the non-informed NN, and the extrapolation ac-
curacies tend to increase when more physics knowledge is incorporated
into the PINN.

4. Numerical example 2: Liquid-liquid separator

With this second example, we aim to investigate the generalization
nd state estimation capabilities of the PINN models under varying

amounts of measured physical property data supplied as additional
inputs to the NN. Thus, we now focus on the data-driven part of the
PINN.

The dynamic liquid–liquid separator model shown below is based
n the work of Backi et al. (2018, 2019). We included extensions for

swarm sedimentation in the aqueous phase, convection terms for the
drop size distribution (DSD) in the dense-packed zone (DPZ) analo-
gously to Backi et al. (2018), and a state-of-the-art coalescence
model (Henschke, 1995). The chosen swarm model (Mersmann, 1980)
was also used to model liquid–liquid columns (Kampwerth et al., 2020)
and takes the form of Stokes’ law (Stokes, 2009) for diminishing hold-
ps. Stokes’ law was experimentally confirmed to model the outlet
old-up of liquid–liquid separator accurately (Ye et al., 2023).
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Fig. 5. Test set errors for the unmeasured differential states of PINN-C with 𝐱𝑢 = [𝑐𝐴]𝑇 , 𝐱𝑢 = [𝑇 ]𝑇 and 𝐱𝑢 = [𝑇𝐾 ]𝑇 for the Van de Vusse reactor example. All error values correspond
o the respective unmeasured differential state, e.g., the value for the model with 𝐱𝑢 = [𝑐𝐴]𝑇 shows the error of 𝑐𝐴. Boxplots show the results of 25 models (5 runs each for 5 data

sets), averaged over the test set of each model. The error metric is the mean absolute percentage error (MAPE).
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Fig. 6. 𝑅2 values for PINN-C with 𝐱𝑢 = [𝑇𝐾 ]𝑇 and 𝐱𝑢 = [𝑇 ]𝑇 (test set goodness of fit).

Fig. 7. Test and extrapolation set errors of the reactant concentration 𝑐𝐴 for all
models. The results are on the low-data regime. The error metric is the mean absolute
percentage error (MAPE).

The considered liquid–liquid separator shown in Fig. 8 is divided
nto three subsystems: light (organic) phase, dense-packed zone (DPZ),

and heavy (aqueous) phase. The light phase is assumed to be free of
the dispersed phase; the DPZ is assumed to have a constant hold-up 𝜖𝑝
(volume phase fraction of dispersed phase) of 0.9, and the heavy phase
contains dispersed organic droplets but mostly water. The total volume
flow �̇�in enters the separator in the heavy phase with the dispersed light
phase described by the Sauter mean diameter 𝑑32 and phase fraction of
organic phase 𝜖in. In the heavy phase, the dispersed droplets sediment
upwards as a droplet swarm, resulting in the volume flow of organic
droplets to the DPZ �̇�𝑠. In the DPZ, drop–drop coalescence is assumed
to be negligible, and only droplet–interface coalescence occurs, giving
the volume flow of coalesced drops �̇�𝑐 to the light phase. The volume

̇
flow of water 𝑉𝑤 from the aqueous phase to the DPZ stems from trapped

9 
water between the sedimented droplets and coalesced drops at the
nterface of the organic phase. By applying a volume balance to the

DPZ and assuming a constant hold-up, the volume flow of water can
e expressed by the sedimentation and coalescence rate. The outlet
olume flow of the aqueous �̇�aq,out and organic phase �̇�or g,out are the
anipulated variables of the settler, 𝐮 = [�̇�aq,out , �̇�or g,out ]𝑇 .

The following volume balance equations are obtained after trans-
forming the volume of a cylindrical segment to the height of each
segment (Backi et al., 2018):

ℎ̇𝐿(𝑡) =
�̇�𝑖𝑛(𝑡) − �̇�𝑎𝑞 ,𝑜𝑢𝑡(𝑡) − �̇�𝑜𝑟𝑔 ,𝑜𝑢𝑡(𝑡)

2𝐿
√

ℎ𝐿(𝑡)(2𝑟 − ℎ𝐿(𝑡))
, (5a)

̇ DPZ(𝑡) =
�̇�𝑖𝑛(𝑡) − �̇�𝑎𝑞 ,𝑜𝑢𝑡(𝑡) − �̇�𝑐 (𝑡)

2𝐿
√

ℎDPZ(𝑡)(2𝑟 − ℎDPZ(𝑡))
, (5b)

ℎ̇aq(𝑡) =
�̇�𝑖𝑛(𝑡) − �̇�𝑎𝑞 ,𝑜𝑢𝑡(𝑡) − �̇�𝑠(𝑡)

1
𝜖𝑝

+ �̇�𝑐 (𝑡)
1−𝜖𝑝
𝜖𝑝

2𝐿
√

ℎaq(𝑡)(2𝑟 − ℎaq(𝑡))
(5c)

Here, ℎ𝐿, ℎDPZ, and ℎaq are the heights of the total liquid, the DPZ,
nd the aqueous phase, respectively, each measured from the bottom

of the separator. They constitute the differential states 𝐱 of the system.
ote that the volume flow rates �̇�𝑖𝑛, �̇�𝑎𝑞 ,𝑜𝑢𝑡, �̇�𝑜𝑟𝑔 ,𝑜𝑢𝑡, �̇�𝑐 , and �̇�𝑠 are
lgebraic quantities. Similar to the CSTR case (Section 3), use of the
ot notation to indicate flow rates is motivated by standard practice in

engineering. In contrast, the dot symbols on the LHS of Eqs. (5a)–(5c)
denote derivatives with respect to time. In the full-order mechanistic

odel (see Section SM4 of the Supporting Materials), the coalescence
nd sedimentation rates �̇�𝑐 and �̇�𝑠 are functions of ℎaq and ℎDPZ,

boundary conditions at the entrance and physical properties such as
the Sauter mean diameter 𝑑32 and the coalescence parameter 𝑟v. As they
annot be measured, we aim to estimate �̇�𝑐 and �̇�𝑠 with a PINN model
hat uses only Eqs. (5a)–(5c) as available physical knowledge, i.e., the

constitutive equations for the coalescence and sedimentation rates �̇�𝑐
nd �̇�𝑠 are assumed to be unknown.

We assume that the total liquid height in the separator is constant,
s this is the usual mode of operation. Then, the differential balance

Eq. (5a) becomes an algebraic relation, serving as a closure condition
for the flows in and out of the separator:

�̇�in(𝑡) − �̇�aq,out (𝑡) − �̇�or g,out (𝑡) = 0
We also aim to investigate whether the PINN can take advantage of
measurement data on 𝑑32 and 𝑟v that are provided as input to the NN
although these quantities do not appear in the physics Eqs. (5a)–(5c).

hus, we create three different PINN models with an increasing number
of physical properties added as inputs to the NN, along with a vanilla
NN for comparison (cf. Table 9). Moreover, we show the network
structure of the models in the Supplementary Materials. As in Section 3,
we make the time, states, and manipulated variables dimensionless
for better performance and stability during NN training. We give the
dimensionless variables and equations in the Supplementary Materials.



M. Velioglu et al.

a

l

1
p
c
t

P
t
s
e

w
t

h
a

Computers and Chemical Engineering 192 (2025) 108899 
Fig. 8. Separator with the light phase (top), dense-packed zone (center), heavy phase (bottom), and flows. The dispersion with the properties phase fraction of dispersed phase
𝜖in, Sauter mean diameter 𝑑32, and total volume flow rate �̇�in enters the heavy phase from the left. The heavy phase has the following outgoing flows: sedimentation rate �̇�𝑠, water
flow rate �̇�𝑤 and outlet flow �̇�aq,out . The dense-packed zone is modeled with a constant hold-up 𝜖𝑝 = 0.9 and a coalescence rate �̇�𝑐 . The light phase has the outlet �̇�or g,out .
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Table 9
Inputs of the models for the liquid–liquid separator.

Model name Network inputs

Vanilla ANN 𝑡, ℎaq(𝑡0), ℎDPZ(𝑡0), �̇�aq,out , �̇�or g,out
Base PINN 𝑡, ℎaq(𝑡0), ℎDPZ(𝑡0), �̇�aq,out , �̇�or g,out
PINN-d32 𝑡, ℎaq(𝑡0), ℎDPZ(𝑡0), �̇�aq,out , �̇�or g,out , 𝑑32
PINN-d32-rv 𝑡, ℎaq(𝑡0), ℎDPZ(𝑡0), �̇�aq,out , �̇�or g,out , 𝑑32 , 𝑟v

4.1. Data set generation, training, and hyperparameter selection

We investigate the phase separation of n-butyl acetate dispersed in
water in a pilot-scale separator. The radius and length of the separator
are 𝑅 = 0.1 m and 𝐿 = 1.8 m. We take the operating ranges presented
in Table 10, with a selected time interval for step-wise control changes
nd thus process time of 20 s, i.e., 𝑡 ∈ [0, 20] s. We keep the manipulated

variables constant throughout the process time for implementation
reasons, as done in Section 3. Data generation to calculate the physics
oss term 𝑀 𝑆 𝐸𝑝ℎ𝑦𝑠𝑖𝑐 𝑠 and the initial condition loss term 𝑀 𝑆 𝐸𝑖𝑛𝑖𝑡 in

Eqs. (2) are done by selecting 𝑁𝑒 = 10, 000 collocation and 𝑁𝑖 =
00 initial value points. Again, the selection is done using Latin Hy-
ercube sampling. We choose the bounds for the initial states 𝐱(𝑡0)
orresponding to the minimum and maximum values of the states 𝐱 in
he operating range of the process (see Table 10), and perform similarly

for the control variables 𝐮. We use the explicit Runge–Kutta method of
order 5 for the process data generation, utilizing solve_ivp solver from
scipy.integrate module in Python (Virtanen et al., 2020; Dormand and
rince, 1980), with a relative and absolute error of 1×10−12. We output
he trajectories on a time grid 𝑡 ∈ [0, 20] s with 𝛥𝑡 = 0.1 s. Nonphysical
tates, such as flooding of the separator with the DPZ, are addressed by
arly termination. The resulting shorter trajectories are kept in the data

set; however, the step size 𝛥𝑡 is adjusted to keep a constant number of
grid points among all trajectories. We create 𝑁𝑡𝑜𝑡𝑎𝑙 = 200 trajectories.
From these, we select 𝑁𝑡𝑒𝑠𝑡 = 40 trajectories for testing. For training,

e use 𝑁𝑡𝑟𝑎𝑖𝑛 trajectories, each having 𝑁𝑚 = 201 data points. The
otal number of measurement points are 𝑁𝑑 = 𝑁𝑡𝑟𝑎𝑖𝑛𝑁𝑚. Again, we

create two training sets from the remaining 160 trajectories not used
for testing: a training set representing a low-data regime consisting of
only 𝑁𝑡𝑟𝑎𝑖𝑛 = 20 training trajectories, and a training set representing a
high-data regime consisting of 𝑁𝑡𝑟𝑎𝑖𝑛 = 160 training trajectories.

We use the strategy described in Section 3.1 for the training and
yperparameter optimization. For the low-data regime, we find that
 network with two hidden layers and 32 nodes performs the best.

A network with two hidden layers and 128 nodes performs best for
the high-data regime. The t anh activation function performs best in
all cases. The grid search is done with 5 data sets and 5 runs for
 d

10 
Table 10
Ranges for initial states and inputs for the liquid–liquid separator
example.
Variable Lower bound Upper bound

ℎaq,0 0.090 m 0.110 m
ℎDPZ,0 0.108 m 0.132 m
�̇�aq,out 4.5×10−4 m3/s 5.5×10−4 m3/s
�̇�or g,out 2.0×10−4 m3/s 5.0×10−4 m3/s
𝑑32 9.0×10−4 m 1.1×10−3 m
𝑟v 0.033 0.043

Table 11
Incidence matrix of the PINN models for the liquid–liquid
separator. The matrix is identical for all three PINN models.
If an unmeasured state appears in an equation, it is marked
with a cross. Encircled crosses show the feasible assignment of
states to equations. The matrix has full column rank.
[𝒇 , 𝒈] ↓ [𝐱𝑢 , 𝐲𝑢] → �̇�𝑐 �̇�𝑠

Eq. (5a)
Eq. (5b) ⊗
Eq. (5c) × ⊗

each data set to account for variations in training/test split and weight
initialization. Moreover, we use a sigmoid activation function for the
utput layer to bound the output values between 0 and 1 to prevent

the square root in the denominator of Eqs. (5b) and (5c) from attaining
negative values during PINN training. The following numerical studies
are done with 5 data sets and 5 runs for each data set. The results of
the runs are reported as the average error over 𝑁𝑡𝑒𝑠𝑡 = 20 trajectories.

4.2. Results

We show the incidence matrix of the liquid–liquid separator PINN
model in Table 11. The unmeasured NN outputs are the algebraic states
𝑢 = [�̇�𝑐 , �̇�𝑠]. The total liquid height is known and constant, i.e., ℎ̇𝐿 = 0.
he incidence matrix shows a feasible assignment and thus indicates
ossible state estimation.

We compare the prediction error of the states of the liquid–liquid
separator model based on test set data. As can be seen from Fig. 9(a),
the prediction accuracy of the DPZ height ℎDPZ increases slightly with
the addition of the Sauter mean diameter at the inlet 𝑑32 as a NN
input. However, a more drastic increase can be noted if the coalescence
parameter 𝑟v is added as NN input. We see a similar trend with the
estimation of the coalescence rate �̇�𝑐 in Fig. 9(b), although the accuracy
ncrease is more apparent in the high-data regime. As explained in the
upplementary Materials, the coalescence parameter 𝑟v plays a more
irect role in the determination of the coalescence rate �̇� , which in turn
𝑐



M. Velioglu et al.

h

s

r
p

p
o

Computers and Chemical Engineering 192 (2025) 108899 
Fig. 9. Test set error for the DPZ height ℎDPZ and the coalescence rate �̇�𝑐 for all PINN models and data regimes. The error metric is the mean absolute percentage error (MAPE).
Fig. 10. Test set error for the water height ℎaq and the sedimentation rate �̇�𝑠 for all PINN models and data regimes. The error metric is the mean absolute percentage error
(MAPE).
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has a high impact on ℎDPZ (Eq. (5b)). The Sauter mean diameter at the
inlet 𝑑32 has only an indirect role since the sub-model for coalescence
and sedimentation in the full-order mechanistic model (see Section
SM4 of the Supporting Materials) divides the separator into segments
through the axial length. Thus, the Sauter mean diameter at each
segment 𝑑32,𝑖 determines the coalescence rate rather than the value at
the inlet. Moreover, since the PINN models are not trained with the
data of the coalescence rate �̇�𝑐 , and the sub-model for the coalescence
rate is not provided as physics knowledge, the estimation accuracy of
the coalescence rate �̇�𝑐 highly depends on the prediction accuracy of
ℎDPZ.

In Fig. 10(a), we observe that the prediction accuracy of the water
eight ℎaq does not change notably with the addition of 𝑑32 and 𝑟v as

further NN inputs. We note a similar trend for the prediction of the
sedimentation rate �̇�𝑠 in Fig. 10(b). These findings are not unexpected
ince the added physical properties play a negligible role in the sub-

model for sedimentation rate �̇�𝑠 in the full-order mechanistic model
and consequently for the water height ℎaq.

The vanilla ANN performs considerably worse: For the DPZ height
ℎDPZ, the mean error of 25 models is 2.06% (MAPE) for the low-data
egime and 1.78% (MAPE) for the high-data regime. For the water
hase height ℎaq, the mean error of 25 models is 1.33% (MAPE) for the

low-data regime and 1.13% (MAPE) for the high-data regime. Note that
the vanilla ANN cannot estimate the coalescence and sedimentation
rates, �̇�𝑐 and �̇�𝑠, as no measurement data were available for training.

Overall, all PINN models show great generalization capabilities in
the low-data regime for the prediction of ℎDPZ which is a significant
erformance indicator for separation efficiency, with a maximum value
f 0.46% for the mean absolute percentage error (MAPE). Moreover,
11 
the PINN models can estimate the unmeasured states, for which con-
stitutive equations were assumed to be unknown, with a maximum
error value of 8.28% for the coalescence rate �̇�𝑐 , and with a maximum
error value of 1.62% for the sedimentation rate �̇�𝑠. As a final remark,
we observe that adding 𝑑32 and 𝑟v as inputs to the PINN significantly
improves the prediction of ℎDPZ and the estimation of �̇�𝑐 .

5. Conclusion and outlook

This paper investigates the PINN-based dynamic modeling of chem-
cal engineering processes that are characterized by limited physical
nowledge and limited data availability. Recognizing that certain pro-
ess states, e.g., reaction rates or coalescence rates, often lack descrip-
ive constitutive equations and cannot be measured, we set out to see if
INNs can infer such unmeasured states by leveraging known physical
quations and data on measured states. To this end, we conducted
umerical studies using two fully-known mechanistic process models

and mimicking real-world modeling situations that are characterized
by limited physical knowledge and data availability. Specifically, we as-
sumed that certain equations would be unknown and thus unavailable
for PINN development and that only a subset of process states would
be measurable.

In both the Van de Vusse continuously stirred tank reactor (CSTR)
example and the liquid–liquid separator example, we found that PINN
models vastly outperform vanilla NNs of equal size, show superior
generalization with respect to different initial states and control ac-
tions as well as superior extrapolation capabilities in regions of the
state space without training data. Importantly, we observed that PINN
models indeed may be capable of estimating unmeasured states, even

if the corresponding constitutive relations are unknown. We provided a
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heuristic for when the estimation of such unmeasured states might be
uccessful. Although representing neither a necessary nor a sufficient

condition for state estimation, the heuristic is easy to use and can be
pplied even before data collection is initiated.

Future work should concern the investigation of implicit DAE mod-
els in PINNs and whether the heuristic can be improved based on
heory for observability of nonlinear dynamic systems, see, e.g., Lee and
arkus (1967) and Kou et al. (1973). The feed-forward PINNs used in

ur work could also be compared to physics-informed recurrent neural
etworks that rely on time discretization, see, e.g., Zheng et al. (2023),

or transformer-based PINN architectures, see, e.g., Zhao et al. (2023).
Furthermore, PINN modeling and control of actual plant operations
hould be considered.

We conclude that PINN models with partial physical knowledge
constitute a promising alternative to hybrid mechanistic/data-driven
models in chemical engineering applications and warrant further inves-
tigation by the PSE community due to their potential to estimate states
for which neither constitutive equations nor training data are available.
Such further investigation should include performance comparisons
between PINNs and hybrid models on identical tasks. For instance,
for the estimation of immeasurable states 𝒚 that lack constitutive
equations, a DNN predicting measurable differential states 𝒙 followed
by a mechanistic model that uses (i) known balance equations, (ii) the
predictions of 𝒙, and (iii) estimates of �̇� obtained through automatic
differentiation of the DNN to compute immeasurable algebraic states
𝒚 would constitute a sequential hybrid model that could be com-
pared to a PINN. Similarly, hybrid models recently proposed by Pahari
t al. (2024) and Sitapure and Sang-Il Kwon (2023) use DNNs and
ime-series transformers, respectively, to estimate (spatio-)temporally
arying quantities as inputs to mechanistic sub-models.
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