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The g tensor, which determines the reaction of Kramers-degenerate states to an applied
magnetic field, is of increasing importance in the current design of spin qubits. It is
affected by details of heterostructure composition, disorder, and electric fields, but it
inherits much of its structure from the effect of the spin—orbit interaction working
at the crystal-lattice level. Here, we uncover interesting symmetry and topological
features of g = g; + g for important valence and conduction bands in silicon,
germanium, and gallium arsenide. For all crystals with high (cubic) symmetry, we
show that large departures from the nonrelativistic value g = 2 are guaranteed by
symmetry. In particular, considering the spin part g¢(%), we prove that the scalar
function der(gg(%)) must go to zero on closed surfaces in the Brillouin zone, no
matter how weak the spin—orbit coupling is. We also prove that for wave vectors %
on these surfaces, the Bloch states |#,;) have maximal spin—orbital entanglement.
Using tight-binding calculations, we observe that the surfaces det(g(k)) = 0 exhibit
many interesting topological features, exhibiting Lifshitz critical points as understood
in Fermi-surface theory.

g-factor | spin-orbit | entanglement | topology | Lifshitz transition

Semiconductor spin qubits hosted in quantum dots (1) are emerging as promising
candidates for scalable quantum computing due to their long coherence times and
potential integration into current semiconductor technology. In order to do coherent
spin manipulation it is important to identify noise sources. There are two main sources
of noise in spin qubits: Charge noise and spin noise. Charge noise can result in spin
dephasing due to spin—orbit interactions (2, 3) and its dependence on the g-factor. The
role of the g-factor in the realization of scalable and robust information processing using
spin qubits is paramount. Even in a device structure like a quantum dot, the g-factor,
an intrinsic one-electron property that characterizes the magnetic moment of Kramers-
degenerate electronic states, is largely determined by the underlying crystal physics, as
explored in the present paper.

In fundamental particle physics, the electron g-factor, as found from Dirac’s relativistic
wave-equation, is a dimensionless magnetic moment which has an exact value of 2.
Quantum electrodynamics modifies the Dirac g-factor, resulting in very small deviations
from 2. In the solid state, relativistic interactions in many cases cause the g-factor value to
differ substantially from 2. Band electrons are subject to a crystal potential V() which by
itself does not cause any changes of the g-factor. But the spin—orbit interaction, working
together with the crystal potential, modifies the g-factor. Since these deviations depend
on V(r), they are crystal and band specific, unlike the deviations coming from quantum
electrodynamics, which are much smaller and universal in nature. Our investigation
in this paper provides a theoretical framework, using the tight-binding formalism, to
describe the g-factor in the setting of bulk semiconductor materials.

The effective mass tensor is an important quantity for the determination of various
properties in band theory. Luttinger provided a full description of the effects of magnetic
field on a band state, remarking that the inverse effective mass is not isotropic, and
not even symmetric (4). He showed that the antisymmetric part of the inverse effective
mass describes the orbital response of the band electrons to an external magnetic field,
resulting in an orbital contribution g;, where we see that the g-factor is itself promoted
to the form of a tensor (but not necessarily a symmetric one). This is distinct from the
spin contribution g arising from the Zeeman interaction. Thus, one has a formalism for
computation of the full response g, , = g; + g¢; we will compute and discuss interesting
features of this quantity in this paper.

It is interesting to note that another analysis for g;, on the face of it different from
Luttinger’s theory, came to light much later in the context of Berry-phase theory (5).
Here, one considers a localized wave-packet composed of band states. It is noted that the
circulating currents inside the wave-packet are a source of a magnetic moment, whose
value is shown to be independent of the detailed shape of the wave-packet, and given

PNAS 2024 Vol. 121 No. 31 e2404298121

https://doi.org/10.1073/pnas.2404298121

Significance

The g-factor characterizes the
energy splitting of spin-qubit
states in semiconductor
structures. Decoherence results
when the g-factor varies due to
environmental or structural
fluctuations. Spin-orbit effects
cause g to depart from its vacuum
value of 2. Bulk conduction-band
electrons in silicon show quite
small departures from 2,
indicating the apparent smallness
of the spin-orbit effect there.
However, we show that, due to a
combination of symmetries and
topology, the (anisotropic)
g-factors are guaranteed to
depart strongly from 2 in this
band in some regions of the
Brillouin zone. Studying a set of
important semiconductors, we
see this happening for many band
states, indicating that in many

of today's silicon-germanium
heterostructures, strong
variations of g must be
anticipated.

Author affiliations: @Institute for Quantum Information,
RWTH Aachen University, D-52056 Aachen, Germany; and
bpeter Griinberg Institute, Theoretical Nanoelectronics,
Forschungszentrum Julich, D-52425 Jilich, Germany

Author contributions: D.P.D. designed research; M.S.
performed research; and M.S. and D.P.D. wrote the
paper.

Reviewers: G.B., University of Konstanz; A.D., University
of New South Wales; and A.S., UNSW.

The authors declare no competing interest.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).

"To whom correspondence may be addressed. Email:
d.divincenzo@fz-juelich.de.

Published July 26, 2024.

10f 12


http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2404298121&domain=pdf&date_stamp=2024-07-26
https://orcid.org/0000-0003-4332-645X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:d.divincenzo@fz-juelich.de

Downloaded from https://www.pnas.org by DEUTSCHES KREBSFORSCHUNGSZENTRUM DKFZ-HGF on January 16, 2025 from |P address 134.94.122.118.

by a formula involving the band Berry curvature. Below we
provide a simple derivation showing that this formula is in fact
equivalent to the Luttinger approach involving the antisymmetric
effective mass.

One might expect that in materials where spin—orbit coupling
is weak, with crystalline silicon as a possible example, we might
expect a g-factor always close to 2, which would mean more
specifically g ¢ having three eigenvalues close to 2, and g; having
very small eigenvalues. While this is true for certain bands in
certain parts of the Brillouin zone, we find the actual situation
more surprising.

We find that symmetry and topology guarantee that values
of g¢ far from 2, and in fact reaching to zero, must occur for
certain states. We show that for bands belonging to certain
irreducible representations, there exists a surface in k-space for
which det(gg) = 0, and thar these states must have rigorously
maximal spin—orbital entanglement.

Thus, we find an interesting phenomenology of the g-
factor, which we explore for the semiconductors silicon (Si),
germanium (Ge), and gallium arsenide (GaAs). Many bands have
det(gg) = 0 surfaces, as well as surfaces of dez(g,,) = 0. Our
tight-binding calculations show that these surfaces come in many
different forms and topologies, reminiscent of Fermi surfaces. We
note that Lifshitz critical points, an exotic feature in Fermiology,
occur rather generically in our surfaces.

1. Theory of the g-Tensor

There have been numerous studies on the determination of the
g-factor both theoretically and experimentally. The g-factor
serves as a quantity of interest for many applications such as
device spectroscopy or g-Tensor Modulation Resonance. It is
crucial in order to understand spin effects. An expression for the
g-tensor has been derived using the effective mass approximation
in the % - p model (6-9). The total Hamiltonian of an electron
in an external magnetic field is

C 2m c

HB) =5 |- wf V)

h 1
+ W(VV(r) X p)- o6+ S&HBO - B, 1]
where A is the vector potential such that B = V x 4. We identify
the spin—orbit Hamiltonian,

2

a
Hso Vpr)~a:Z(Vpr)~0'. [2]

4¢2m? (

The last part is written in atomic Hartree units, introducing
the fine structure constant @. Note that the momentum operator
in the presence of spin—orbit interaction is

T=p+ o X VV(r). (3]

4mc?
The external field changes the crystal momentum % to 2 — %A.
The components of the crystal momentum do not commute.
As first noted by Luttinger (4), the inverse effective mass is
consequently not symmetric. The antisymmetric part

NSy /o ”
(o), =31G),~Go),

is proportional to B. The asymmetric term has, for band 7, the
operator form (10, 11)
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Itis understood that this antihermitian operator acts within the
space of the two (spin degenerate) crystal Bloch wave functions
l#4,4) of band 7. The Zeeman splitting of band state at energy
E,; in magnetic field B is given by the eigenvalues of the 2 x 2
spin Hamiltonian

n? 1\ [ile|By
Hyp = Ene + - €il (—*> ( ) + ugo-B  [6]

fic

(using the Einstein summation convention). The splitting of the
spin-degenerate eigenvalues around the zero-field value E,; has

the form
AE,, = pup,/B:GjiB;. (7]

This defines the symmetric tensor Gj;, from which the band
g-tensor is obtained™:

G:g-gT. (8]

Note that Eq. 8 does not uniquely define g, leaving open
the question of whether it should be considered symmetric or
not. As we will see below, g can also be defined in terms
of the magnetization of the band state, but then there is still
nonuniqueness arising from the choice of basis of the pair of
band states |#,;). Some previous work has considered it natural
to take the g-tensor to be nonsymmetric; see refs. 13 and 14. We
will adopt a convention for which g is not necessarily symmetric;
but our discussion will depend only on the singular values of g,
which are uniquely determined by definition Eq. 8.

Eq. 6 shows that g will have two distinct contributions,
g = g; + g If spin—orbit is zero, only the second, pure spin
term will contribute, in this case with the value 2. For finite spin—
orbit, its contribution, which we denote gg, will in general be
modified, and there will also be a nonzero orbital magnetization
contribution g; from the first term of Eq. 6. g; is directly
determined by the antisymmetric part of the inverse effective
mass tensor.

1.1. The Spin g-Tensor, gs. The Bloch states |#,;) of band 7 of
the last section consist of two orthogonal partners, which we will
denote as eigenvectors |£) and |§) In most cases, the relations
between these two states involves the time-reversal operation, i.e.,
a complex conjugation, k, followed by a &, Pauli rotation,

|€) = ioyk |£) . [9]

The states |u,;) are generally a pseudo-Kramers pair, as the
time reversal actually relates |#,;) and }u,,,,/e). But |&) and |§)
will here always denote the pair of states at wavevector £ that
are spin-degenerate in the limit of zero spin—orbit interaction.
“Pseudo-Kramers” means, in many cases of interest, that these
states are related by time reversal followed by space inversion.

Introducing the spin matrix

_ 1 (Elaide) (¢loil)
"2\ (Eloile)  (Eloilé)

*Note that we use the convention of Abragam and BIean;y (12)in Eq. 8; other, more recent
work (e.g., 13) uses a transposed convention, i.e., G =g'g.

(10]
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one gets a simple expression for the spin contribution to the
g-tensor (12)

1 -
gg,‘j = 5 Tr(2S,~cj). [11]

The appearance of 2§; in Eq. 11 results in the correct spin
contribution to the g-factor due to the magnetic moment formula
M = L+ 28. Here and below in Eq. 17, 6; denotes a Pauli-
matrix operator acting on the space of the states |£), ), not to
be confused with the operators 6; above, which operate on the
electron-spin Hilbert space |1), [{).

1.2. The Orbital Moment Contribution to the g-Tensor, g;. [t is
interesting to note that since the original work of Luttinger, a
different point of view has emerged about the magnetic moment
of band electrons. One considers the electron state as the coherent
transport of a wave-packet moving in k-space (5, 15, 16). Since
the spread of the wave-packet is taken to be much smaller
than the dimension of the Brillouin zone, it is affected only
by the local band properties. Due to a rotation around its
center of mass, this wave-packet has an orbital magnetic moment
given by'

z@pqiwwﬂﬂH@—%@mwMy [12]
where we see the appearance of the Berry curvature [Vu,,).
This alternative formulation is completely equivalent to the
Luttinger result Eq. 4, which we show by the following steps.
The gradient of the Bloch wave-function can equivalently be
written using the position-Hamiltonian commutator (17),

S LICLTE R

m

|8um =

Following from this, the orbltal magnetic moment operator
takes the form

Li(k 2h3 Z €ijk by 1 )(_ui[[)xk, ]- (14]

Jra

L; is taken to be an operator acting on the states |#,) and |#,,);
these are assumed to be degenerate if the spin—orbit interaction
is zero, but in general may not be exactly degenerate with finite
E@Em.

EytE, _
Bl — £, —

spin—orbit interaction(5). Here, E,,, =

If bands 7 and 7 are degenerate, so that

E,, then indeed the asymmetric mass term is the magnetization
operator; since ﬁﬂ] [xj, H],

AS

n —ie milup) (upl 7wy —ie 1

_ LA L N B B T

’ _mm2§; I A [15]
phnm

The orbital angular momentum matrix for states |£) and |2§) is

ek ((Elmjlo) (sl mpl&) (€l jloug) (s ma | E
oy g (Gl Gmlin)

= Ecz — By \(Elmjlo) Gl mpl)  (El7jlous) (s ma|E)
[16]
Then, similarly to Eq. 11,
1 N

TThe sign of Eq. 12 is the opposite of the sign found in the general literature. The sign of
Eqg. 15 corresponds to the atomic limit of the Landé g.
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2. Topological and Entanglement Properties of
the g-Tensor

2.1. Linear Algebra of the g-Tensor. The cigenvalues of G (Egs.
7 and 8) are the square of the singular values of g. The singular
value decomposition of g gives

g=UZV. (18]

Given that g(k) is real, U and V are two k-dependent,
orthogonal, real matrices, unique except for columnwise (for
U) and rowwise (for V) sign changes. %, also k-dependent, is
a unique positive semidefinite diagonal matrix of the singular
values of g (taken to be in descending order along the diagonal).
L > Ly, > X are the three scalar quantities, commonly know
as the g-factors.

The columns of U give the principal axes for the external
magnetic field B, such that the Zeeman splittings of the energy
levels are

AE = up /22 B2 + Zyz},Byz + X2, B2. [19]
The total magnetic moment vector of the lower energy
eigenstate in magnetic field B is

M = J252B IAE, [20]

For the proof of the upcoming Theorem 1, we will require
energy-band pairs B(%), B(%) for which accidental degeneracy is
absent. We present the definition of the nondegeneracy of the
bands, which immediately permits the statement of the theorem.

2.2. Zeros of the g-Factor, and Relation to Entanglement.
The g-tensor has been derived using the eigenvectors of the
Hamiltonian, H (). We note that H (k) can be chosen to vary
continuously with £. Consequently, the eigenvectors can also be
chosen to be continuous in k. Thus, from the aforementioned
procedure of calculating the g-tensor, it must be a continuous
quantity with respect to k. det(g ) must also be continuous. For
the proof of the upcoming Theorem 1, we will require energy-
band pairs B(%), B(%) for which accidental degeneracy is absent
(18). We present the definition of the non-degeneracy of the
bands, which immediately permits the statement of the theorem.

To introduce a notation for this, we recall (Eq. 2) the
expression for Hso in Hartree atomic units:

)
HSO:?(VVXP)'O'
@ is the fine structure constant, but for the sake of Definition 1
and Theorem 1, we treat it as a running constant.

Consider the bands of Table 1. At 2 = 0, the bands that we will
focus on are labeled, for spin—orbit parameter @ = 0, according
to the irreducible representations in blue in the second column of
Table 1. For spin—orbit parameter @ > 0, these bands spilt into
bands with the (double group) irreducible representations in red
and black. The bands with the red label are doubly degenerate
whereas the ones in black may have a different degeneracy.

We will require that there be no accidental degeneracies
involving the band pair B(k), B(k) dispersing from the states
belonging to irrep. I'; (red irreps. from Table 1). This pair is
degenerate at £ = 0, and sometimes degenerate elsewhere (for
some point groups and some directions in k-space). Furthermore,
this pair of bands is degenerate as @ — 0 with the other bands
B,u1: (%) associated with the accompanying irrep I'; in the table,
i.e., in the pair I'; ® I'; Besides these, we will need to require
that no other degeneracies occur, as captured by this definition
(ay > 0 is some fixed spin—orbit strength):

https://doi.org/10.1073/pnas.2404298121
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Table 1. Band labels for which det(gs) is guaranteed to
—

pass through 0 along the ray OA
Directions of maximal

Group Representations entanglement
T F4®D1/2:F5®F6®F7 —
+ =t ot ot DA
Th F4 ®D1/2—F5 GBF6 GBF7 VOA
I, ®Dip=T @Tg &y .
Ty I4®D1p =T @Iy OAIA € {(kx, 0, 0),
I'5®D1p=T7®T3 (0, ky, 0), (0,0, kz)
(kx, ky, kz)}
(0] F4®D1/2=F6®Fg —
I's®D1=T7®Tg .
O Fﬂt ® D1y = Fé ® rg VOA
g ®Di2=T17 &g

F;@D”z:l“é@l"g
[ ®@Di2 =17 &l

Groups of bands are labeled according to the irreducible representations of the states
in the set of bands at k = 0 as given in refs. 19 and 20. The left-most column of this
table indicates the points groups. In the central columns, the bands denoted in blue are
bands without spin-orbit interactions. These bands split into the red and black bands
when spin-orbit couplings are taken into account. The red bands are the bands with

Kramers degeneracy at T' for which det(gs) changes its sign along any ray OA. The
right-most column of the table contains the directions in which a maximal spin-orbit
entanglement is guaranteed for the degenerate red bands of the corresponding symmetry

group.

Definition 1: Nondegeneracy of Bands. Band pair B(k), B(k)
is nondegenerate if Va such that 0 < a < a,, Ikyp and AE > 0
and all three conditions are true: 1) V&, |k| < knp, VB'(k) ¢
{B(k)> B(k)) Bmu/l(k)}’ VB//(k) € {B(k)’ B(k)’ Bmulf(k)},
|\B' (k) — B’(k)| > AE. 2) Vk |kl < knp, B(k) and
B(k) are nowhere degenerate with B,,,; (k). 3) Yk, |k|=knp,
|B(k) — By (k)| > AE and |B(k) — B, (k)| > AE.

For any band-pair in a particular crystal, the conditions of our
definition are easily checked and are seen clearly to be true for
all the materials studied later in the paper. We can now proceed
directly with the first main result:

Theorem 1. Given a crystal with any of the cubic point group
symmetries: O, Oy, T, T, or Ty. Consider any pair of energy
bands belonging to the irreducible representations of the symmetry
group of the crystal, indicated in red from Table 1, which have
come from states with the blue irreducible representation for zero
spin—orbit coupling. We consider band pairs that are nondegenerate
in the sense of Definition 1. Then for sufficiently small spin—orbir
coupling, there exists a surface in k-space, enclosing the I point, on
which det(gs(k)) = 0, where g5(k) is the spin contribution to the
g-tensor.

Proof: Consider the bands occurring in the band structure of
crystals with the point groups O, Oy, T, T), T, that belong,
at k = 0, to the irreducible representations in red in Table 1.
The condition that the spin—orbit interaction is nonzero implies
that these states have only a two-fold degeneracy, and not higher
(accidental degeneracies are excluded by assumption). This two-
fold degeneracy is precisely the Kramers degeneracy. We denote

these Kramers-degenerate pairs as |&r), éfr), where I is any of
the red labels of Table 1.

The spin g-tensor of these doubly degenerate bands are
calculated using Eqs. 10 and 11. At k = 0 and infinitesimal

spin—orbit coupling @ = 07 the eigenvectors of these bands
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belonging to irrep I'; are built up from so-called (11) “p-like
states” |X), 1Y), |Z), mutually orthogonal, normalized orbital
states that are often predominantly composed of atomic p-orbital
states. For all our red irreducible representations in Table 1,
symmetry guarantees (cf. ref. 11, and spin harmonics tabulated
in ref. 19) that these eigenstates have the form

11 1 ,
Iér) = ‘5, 5> = E(IZ) M) +1X) )+l D)),

- 1 1 1
|ér) ‘2: 2> \/§(|Z>|¢) 1X) 1) +21Y) 1)) . [21]

For finite a all states of irrep I'; are mixed. Some are not of
the form Eq. 21 because they arise from different nonrelativistic
states, e.g.. for group 7, one hasI'y ® Dy, =I'g. Fora = 0t
these additional states always have the simple form |S) 1),
|S) |}). Because of the mixing of these states, the eigenstates
will have the more general form

11
|§r>::‘5,5><+|6§ry
_ 1 1 _
Mﬂ=’;—5)+b&% [22]

But because of the nondegeneracy condition, these corrections
|6&) can be calculated with perturbation theory.¢ All energy

denominators E (,0 ) _ E,,(O) are guaranteed by Definition 1 to
have a magnitude no less than a finite constant AE. We conclude
from this that norm(|6€)) = O(a/AE). With this, an explicit
calculation (Egs. 10 and 11) for any pair of states of the form
Eq. 22 gives

0 0
g=10 5 0]+0(a/AE), [23]
0 0 —%
Thus det(gs(k=0)) = —% + O(a/AE), so that
det(gs(k = 0)) < 0 for sufficiently small a.
It is interesting to note that gg = —2/3 coincides with the

application of the Landé expression with quantum numbers
L=1,8=1/2]=1/221)8

We now consider the calculation of gs(k) for |k| = Anp
(Definition 1). To evaluate Eq. 10, we need the Bloch eigenvectors

of bands B(k), B(k); we will denote this pair as |u,(k)) and
|t4n(k)). We again can apply perturbation theory:

|1ty m (k) =

o)
i ®) =

(14
+0<Rzﬁ>. [24]

We take as given the convergence of this perturbation, which is essentially the same as
the issue of the convergence of the k - p perturbation calculations as in Egs. 5 and 13,
which is well established.

SThe Lande expression for gg can be seen from eq.31.37 of ref. 21, p. 654, which shows
the two contributions to the g-tensor in the atomic limit. It is interesting to note that while
it is common to say that these band states have quantum numbersL = 1,5 = %,_I = 17
the symmetries that this statement implies are only partially in force. In particular, while
symmetry dictates that gs is indeed exactly the Lande value —2/3 for a — 0, g; is not fixed
to its Lande value +4/3.

pnas.org
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And again, we use the fact that all energy denominators are
by assumption greater than AE. Thus, the states |un m(k)), for
sufficiently small a, are arbitrarily close to the eigenvectors with

(0)

) (/e)) For these the three eigenvalues

no spin—orbit coupling ‘u
of gg are +2, and thus, der(gg(knp)) = +8. Since der(gg) is
continuous in k and changes sign between the origin and the

sphere of radius kxp, there must be a closed surface within this
sphere on which det(g¢(knp)) = 0. O

Note that the g-factors describe an isotropic quantity at k =
(0,0, 0). Eq. 23 does not contradict this, as changing the phase

convention of one state, fl") |«fr> gives, fora = 0,
-2 0 0
g&=| 0 -3 0 [25]
0o 0 -3

whose determinant is also — %, and whose magnetic moment M
is also identical, as seen from Eq. 20. A similar change of sign
convention causes the eigenvalues of g at £yp to be (=2, =2, 2),
but with der(gg) = +8 unchanged.

A final word about Theorem 1: On the face of it, the theorem
seems to contradict the seemingly obvious assertion that gg = 2
if there is no spin—orbit coupling, which would mean that
det(gs) = +8. But we see that the actual statement is more
subtle: As @ — 0, det(gs(k)) = +8 for almost all k. k = 0
is special because of the emergent six-fold symmetry of the
multiplets when @ = 0. Thus, the order of limitsa — 0,k — 0
matters, and it is permitted that a surface det(gg(k)) = 0 always
exists, but this surface must collapse onto the origin as @ — 0.

We noticed that, along the directions OA shown in Table 1,
states in these bands exhibit maximum entanglement at the point
where det(g;) = 0. We will now prove this interesting fact.
For this, we first show the general relation between the reduced
density matrices of the electron spin, ps and pg of the states |£)
and \5) respectively.

Lemma 1. Consider the reduced density matrices ps and ps of the
Kramers-paired bands corresponding to the irreducible representa-

tions in red in Table 1 along the directions 5)4 Then,
ps = oypi o, [26]

Proof: Consider the eigenstates |€) and ’5) of Kramers-paired
bands corresponding to the irreducible representations of
inversion-symmetric groups and the group 7,;. We discuss the
proof in three parts as the underlying symmetry for each of these
cases is different. The first part deals with the inversion-symmetric
groups. For the group 7, degenerate eigenstates occur only along
the A- and the A- directions. The second and the third parts deal
with the two cases of 7.

1. The eigenstates |£) and |§_) of bands in the inversion-
symmetric groups are related by an inversion followed by
the time-reversal operation 0 (20), (22), having the form,

|E) = Z u( zkr Zg zk-r‘ [27]

p
The reduced density matrices of these two states are, ps =
Tror p = Tro (IENE]) and s = Trpm p = Trom (|E[E])-
Inversion is a space operation and therefore does not affect the
spin part. Since ps is hermitian, pg = o,kpsko, = aypSTa),
(¢ indicating complex conjugation)(23).

PNAS 2024 Vol. 121 No. 31 e2404298121

2. In the A-direction of 7, the states |£) and |§) belong to
the irreducible representation A4 (24) and are given by linear
combinations of the basis states of the little group Cs,. The
basis states of C3,, for the first partner of the irreducible
representation A4, can be chosen to be the following combi-
nations involving the s-like and p-like (cf. Eq. 21) mutually
orthogonal states,

[BM) =19)11).
1

‘32\4) _ —3(|X M+ 1Y) 1) +12) 1),

B) = = (0 01+ 414 = 11 (1) = 1)),
)
NG

Using the projection operator formalism as defined in Sec.

1Z) 1) . [28]

4.4 of ref. 25, where PZ”, by definition, transforms one basis
vector |/) into the basis vector |£) of the same representation

B{“”‘> ta B§‘4> +

Bé\4> of the representation A4 is transformed using the

I',. That is, the eigenstate |£) =

a3

= [32\; |€). We see that this transformation

involves a reversal of spin directions in these basis states.

projector into |§>

Indeed, direct calculation, starting from
5= ppA“ [29]

where 7 is the density matrix corresponding to the state &,
shows that this leads to the reduced density matrices ps =
Try(p) and ps = Tr,4(p) being related as

~ ps22 —PpS12
= 0
ps < —ps21 psi1 > 301

which is the component-wise form of Eq. 26. It is interesting
to note that this derivation makes no use of the time reversal
symmetry.

3. The relevant representation As of the little group Gy, of 7
has four basis states formed out of the s- and p-like mutually
orthogonal states:

BY) = 18) 1),
BY) = 1X) 1),
B) =11 1),
BY)=12)11). BU

. . . . . HA
Note the alternation of spin directions! The projector Pz,

following the definition of Dresselhaus et al. (25), transforms
the state |€) = o ‘BlA5> + a ‘BZA5> + a3 BSA5> + ay ‘B4AS>
into ’E) = f’?; |€). Given the form of the eigenvector |€), its

spin density matrix is diagonal,

_fps11 O
s = ( 0 Pszz> (321

Using the projector, we arrive at the state,

https://doi.org/10.1073/pnas.2404298121
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- _ 45 AésT): ps22 0
ps = Tron (Pfép & < 0 psn)’ 1331

consistent with Eq. 26. O

Note that Eq. 33 implies the satisfaction of the condition Eq.
26 for any choice of the partners of the representation: For an
arbitrary SU(2) rotation

T4((2) ] o + |2 (€] )
g = | Te((2) €] o, + 12) (¢ o)
Te((2) €] o + |2) ¢ o2)

~x X = (1 =) Y)? (1—20)XY
VsV _< (1=20X*Y*  —(c— )X+ c|Y]?

= gy(VpSVT)TO'},, [35]

where ¢ = ps11 of Eq. 32.
Using the lemma, we can show that these two states are
maximally spin—orbital entangled when det(gg) = 0.

Theorem 2. Consider the reduced density matrices of the spin
subsystem, ps, ps, of the Kramers-paired bands corresponding to

=5
the irreducible representations in red along the directions OA as

indicated in Table 1. Then
det(gs) =0 = S(ps) = S(ps) = 1, (36]

where S(ps) = —Tr(pslog ps) is the entanglement entropy of the
reduced density matrix of the spin subsystem.

Proof: The spin g-tensor of these states can be decomposed
according to Eq. 18 as g¢ = UZV. We go to the coordinate
system of the Bloch sphere such that in this transformed basis V'
is rotated away, i.e., g¢ = UZ. This necessitates a change of basis

of |£) and |§> into §’> and |§/) by an SU(2) transformation,

()-( 2)(E) e

where X and Y are complex amplitudes such that [X|* +
Y12 = 1. Eq. 35 shows that for any X and Y this rotation
does not affect the relation between pg and ps. We choose X, ¥
to reflect the mapping SU(2) —> SO(3) (26),

Re(X? — ¥Y?) Im(X?+Y?) —2Re(XY)
V= -Im(X?>—-Y?) Re(X?+7Y?) 2Im(XY)
2Re(XY*) 2Am(XY*) X2 —|Y]?
(38]

6 of 12 https://doi.org/10.1073/pnas.2404298121

iTr(|) (€] o — E)(€] o)
IT(€)(E oy = [€)(e | 3)
iTe(|€) (€] 0. — &) (¢ | o)

The total density matrices of the time-reversal pair |¢') and |€')
are p = |§/> (f/ , p= If/) (§/| Tracing out the orbital degrees of
freedom leaves us with the reduced density matrices of the spin-
subsystem, ps = Tt p = |E6)(E5|. D5 = Tron p = |E5) (5.
The spin matrix from Eq. 10 can be rewritten as

_(TelENE o Tr[E)(E o
L T8 o Te|E)(Een )

and the spin g-tensor has the form

[39]

Trspin(pSax - .ESO-x)
Trypz'n(pSO'y - ﬁSUy) . [40]
Tr.vpin(pso'z - ﬁso'z)

The eigenvectors from Eq. 37 along with the transformed spin
matrix of Eq. 39 give us the spin g-tensor in Eq. 40. Recall
that g¢ = UZ which means that up to a sign factor, dez(gg) =

det(Z). Recall also that X is the diagonal matrix of singular values
in descending order. Since we have

det(gg) = det(X) = Lo X)X = 0, [41]

then at least ¥, = 0, so that all the entries of the third column
of g¢) are zero. Thus,

Trypin(psox — psox) =0,
Tfspz‘n(PSGy - /350')/) =0,
Trepin(psoz — psoz) =0,
= ps—ps=0. (42]
Now, combining ps = ps with ps = GJ,pSTO'}, (Lemma 1) gives

1, (43]

Bo[—

ps = ps =

so that
S(ps) = S(ps) = 1. [44]
O

It should be noted that Theorem 2 applies not only to the three
cubic point groups Oy, Tj, and Ty, but also to various other
noncubic groups (which we look at no further here). As can be
noticed in Table 1, Theorem 2 does not apply at all to the groups
T and O, because they do not have any directions in which pairs
of states are degenerate, even taking time reversal into account.
This has been verified using the method described in (22).

We show that, due to Theorem 1, bands with certain sym-
metries necessarily have surfaces surrounding the I'-point where
det(gg) = 0. In the rest of the paper, we discuss the application
of the theory of the g-tensor to the important semiconductors
silicon (Si), germanium (Ge), and gallium arsenide (GaAs). We
also show the complex topologies of the surfaces of both g¢ and
g = g; + g for important valence and conduction bands with
the relevant symmetry in each of the three cases mentioned in
the lemma above.

3. Tight-Binding Studies

Computations of g-factors for important bands in silicon and
germanium were carried out already long ago (6, 7, 27). We take
up these computations here, but with an emphasis on illustrating
the topological features of the g-factor zeros in important bands,
and the resulting spin—orbit entanglement properties of the band

pnas.org
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Fig. 1. (A) The band structure of silicon. (B) The band structure of germanium. The red labels are the irreducible representations of the band states at T, taking
spin-orbit coupling into account; see Table 1. Energies are in atomic Hartree units.

states. We use a simple tight binding approach and thus do not
strive for ab initio accuracy. We use a model that has been used
extensively for studying states in various nanostructures, but that
has never been adjusted or tested for the magnetic properties that
we study here. Nevertheless, our calculations give an impression
of the general g-factor features that can be expected in these
semiconductors.

3.1. Model Hamiltonian. We use here the sp°4’s* tight-binding
model (28-30) which is seen to be quite accurate for energy
eigenstates in Si and Ge. As originally discussed by Chadi (31),
the Hamiltonian contains diagonal on-site energies and off-
diagonal interaction terms. The spin—orbit Hamiltonian contains
(pm |Hsol p]-,g> interactions between p, and p, orbitals of the same
spin ¢ and (pl-,g|H sol p/w/> on-site interactions between p,/, and
2 orbitals of opposite spins o, 6". The spin—orbit interaction
between the d-orbitals is much smaller compared to that between
the p-orbitals and is usually neglected. The parameters for Si and
Ge have been taken from ref. 32. The known band structures of
crystalline Si and Ge with spin—orbit coupling fit very precisely
with this model (Fig. 1).

In the case of silicon, we see that the bands F;_ and ', of
Table 1 have tiny splittings because the spin—orbit interaction
in silicon is relatively weak. At the I'-point, these bands split
into doubly degenerate Kramers pairs and four-fold degenerate
bands, F;r — 1“7+ + T and I, — I'y + g The splitting is
more clearly visible in the case of germanium, the split-off band
F;_ being relatively far from the band Fg_. The gap between the

bands I'y and 'y is also clearly seen.

3.2. Treatment of Momentum Matrix Elements. Following Ped-
ersen etal. (33), we approximate the momentum matrix elements
as the gradient of the Hamiltonian ({(z) ~ (V,H)) plus certain
nonzero intra-atomic contributions:

(1 () 7 10, (o)) = %ﬂ >V (alH|p)
op
+ 3" a2 dl ald|) (Ey — En).  [45]
a.p

The second term of Eq. 45 contains the intra-atomic position
operator d.

PNAS 2024 Vol. 121 No. 31 e2404298121

To calculate the orbital magnetic moment contribution g; we
must have values for the matrix elements dy 5 = (a|d|p) with the
orbital indices a, f. dap is generally not diagonal in the orbital
index (33). The nonzero cases are determined by symmetry. The
A/ = +£1 selection rule tells us that the principal off-diagonal
contribution will be between s and p orbitals. These matrix
elements are needed for describing the intra-atomic transitions.
In previous tight-binding studies, these have been fit to the optical
properties of the bulk semiconductors (34).

Here, we choose instead to fit them to the Landé g-factor in
the atomic limit. For isolated atoms the g-factor is, according to
the Land¢ theory,

1 (1+L(L+1)—S(S+1))

=35 T +1)
© _L(L+1)—S(S+I))_ 2
2 (1 JU D) =ty W

where gy is the vacuum electron g-factor. Within our tight-
binding model in the atomic limit, this value of g7 = +2/3 occurs
when (5|d|pi)&. = 2.788 foran isolated Siand <s|d|p,')Ge = 2.535
for an isolated Ge. Values are given in atomic units (4p). For GaAs
each species has its own intra-atomic contribution; fitting again
to the Landé value gives <5|d|pl->@Z =2.891, (s|d|pl-)A: = 2.455.

Having set up the tight-binding models, we proceed to
calculate the two contributionsto g, , = g; +g. Wefocus on the
evolution of the singular values of these quantities, and also on the
scalar invariant which is the determinant. The following sections
discuss the numerical manifestations of Theorems 1 and 2. We
then discuss the complex topologies of the surfaces considered by
these two theorems.

3.3. Calculation of the g-Factors.
3.3.1. Singular values of the g-tensor. The important eigenstate
pairs for which the results of Theorems 1 and 2 can be seen are

‘fr-;- )— §F+> (the split-off valence band) and ’SFE >— Er;> (alow
7 7 6

lying conduction band). Such bands show the change in the

sign of the g-factors quite clearly. We first look at the lowest

conduction band in the case of silicon. The plots in Fig. 2 show

the singular values of g and g, , for silicon in a randomly chosen
direction going outward from the I" point. Since we do not go

https://doi.org/10.1073/pnas.2404298121
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Fig. 2. Occurrence of zeros in g-factors, as seen in the singular values of the g-tensor (blue), for the first conduction band of Si. These singular values (by
definition nonnegative) are calculated in an arbitrary direction to highlight the anisotropy. The red dashed curve is the evolution of the determinant of the
g-tensor. (A) shows the singular values and the determinant of only the spin contribution to the g-tensor, gs. The singular values start at 2/3 and converge to 2
which is what we must observe for Si. (B) shows the singular values and the determinant of g;,; = g, + &s. The change in the sign of the determinant is a clear

indication of the change in the sign of the g-factors. |k| is given in inverse atomic units, ag -

along a symmetry direction, g is highly anisotropic, evolving to

have three distinct singular values. For g¢ (Fig. 2), at the I'-point,

Ty Zyys L are (%, %, %), as expected from the above discussion.

det(g ) (red dashed curve) starts at —8/27, crosses zero at the point
where at least one singular value goes to zero (exactly one, in this
case), and asymptotes eventually to +8.

Although not guaranteed by our theorem, we see that dez(g,,,)

also crosses zero (Fig. 2), in fact multiple times, corresponding
to zeros in its singular values. It may also be remarked that the
orbital magnetic moment contributions are quite large at places
where adjacent bands approach the lowest conduction bands,
causing one g-factor to be much larger than 2.
3.3.2. Determining the zero-crossing surface. According to our
theorem, as we travel outward from k = 0 in any direction, at
least one singular value of g ¢, X, should go to zero where dez(g )
goes to 0, at a point we will call £, (there may be an odd number
of such points), assuming that the spin—orbit interaction is “small
enough.” This is indeed what we observe for bands in both silicon
and germanium. The zero-crossing occurs in all directions around
the I'-point creating one or multiple smooth surfaces surrounding
it. These surfaces, given for band 7 by det(g¢(k.)) = 0, can be
as complex as Fermi surfaces, E,(kr) = Er, and will have the
same cubic symmetry. A technique similar to the ones used to
find Fermi surfaces can be employed to determine them. We
discuss briefly one such method that we implement to study
their topology.

Consider the singular value decomposition of g as defined in
Eq. 18. Since the g-tensor is a real square matrix, U/ and V' can be
chosen to be real orthogonal matrices. Then, since det(Z) > 0,

sgn(det(gg)) = det(U) - det(V). [47]

The change in sign of the g-tensor can be determined by
calculating the product of the determinants (1) of the real-
valued orthogonal unitary matrices U and V. As discussed in
Theorem 2, with a change of basis we set V' = 1 so that
sgn(det(gg)) = det(U). But this can cause issues in the directions
of high symmetry. The form in Eq. 47 is generic for all directions
in k-space. Binary search on sgn(det(g)) can be a good choice of
algorithm for finding its zero crossing. We find that it converges
quite quickly and accurately to .. Using the plots of the singular
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1

values, one can get a rough estimate for k.. Choosing that as a
midpoint of a short interval, one may be able to come close to
the value of &, with an arbitrary precision. This is a method we
implemented to enhance the accuracy of this detection.

£ (k)

and ’f_r7 n (kc)> have maximal entanglement entropy. Note that

We also verify numerically that the eigenstates

all the other states of the form |0, ¢) = cos(0) ’§r7+> +
% sin(6) ‘§F7+ > on this Bloch sphere have S(Tr, |0, ¢) (6, ¢|)

<1. For example, the entanglement entropies of the

[%5 (’{:Fﬂi ‘Er;r»]: |+i) =
are S(Tr,p |4) (£]) = 0.810 and

cardinal states, |£) =

[ 5 (Jers)+4[5))]

&, -0.30

Fig. 3. MES of silicon for the first conduction bands, with Brillouin zone
boundary shown. The Inset in the Top Right corner shows the innermost

surface; grid spacing here is 10~2 051. This surface closely resembles a
cuboid, and itis surrounded by flattened toruses in the = (110) directions. The
Inset in the Bottom Left corner is a zoom of this structure, with grid spacing

here being 10—3 a;1.
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S(Tr,pp |£i) (£i]) = 0.824, which are obviously far from the

maximal value.9

4. Topology of det(g)=0 Surfaces

The surfaces in 4 space determined by the equation det(g(k)) =
0, which may be calculated using the method described in Section
3.3.2, can have complex topology. In this section, we look at some
of these surfaces for the first conduction and split-off (valence)
bands for Si, the second conduction and split-off bands for Ge,
and the split-off bands of GaAs. These are the bands belonging
to the interesting representations as discussed in Lemma 1. The
calculations for GaAs have been done using an sp>-band model
(36, 37), which has been fitted to match valence-band properties.
In cases where the adjacent bands approach the bands of our
interest, we observe a multiplicity of these surfaces. Both Si and
Ge show this multiplicity in various directions.

4.1. Maximal Entanglement Surfaces (MES) of g5. On the sur-
faces for which det(gg) = 0, the spin and orbital subspaces are
maximally entangled for Si and Ge, as shown in Theorem 2.
In silicon, for the first conduction band, one sheet of the MES
(Fig. 3) is a smooth cuboid with concave faces, but topologically
a sphere. It extends out to about a tenth of the distance to
the Brillouin zone boundaries (BZB), far away from the band
minimum.

A second family of sheets of this surface, topologically toruses,
occurs in the X-directions slightly over half-way from the BZB.
They exist because the adjacent bands have anticrossings with the
first conduction band along the directions on which these toruses
lie.

For Ge, the conduction bands exhibit an MES larger than that
of Si, occupying almost 20% of the BZ. This Ge MES is similar
in shape to the central sheet of Si, except in the 111 directions.
In these directions, the surface continues as thin rods parallel to
the A-directions, connecting the MES to the second Brillouin
zone through the hexagonal faces (Fig. 4). The topology of this
MES is thus the same as that of the Fermi surface of copper
(21). But compared with this Fermi surface, the connecting rods
in this Ge MES are much longer and narrower. In the figure,
the thickness of these rods has been exaggerated by a factor of 2
due to the thickness of the point plotting. The presence of these
rods is again explained by the fact that adjacent bands lie at a
comparable distance to these bands all along A (Fig. 1).

The split-off band of silicon has an MES with smooth spikes
extending into the A-direction, with the main part of the surface
covering less than 10% of the BZ (Fig. 54). The split-off bands
of germanium form a MES almost resembling a sphere, also
covering about 10% of the distance of the BZB (Fig. 5B).

GaAs does not admit a full surface of maximum entanglement
since, as shown in Theorem 2, we see maximal spin—orbit

90ne could also compute the spin g-tensor using the density matrix formalism. We
consider the spin matrix in the following form,

v_( Tr(po;) Tr({:‘)(:m))
@@ TrGen )

The diagonal terms of S; are clearly a function of ps and ps. The off-diagonal terms that
do not correspond to any density matrix can be developed using the quantum process
tomography formula (35) (Refer to eq(8.154) on page 391), where ¢ is any linear operator:

€ (16 (€]) = & (I4) (1) + e (I4+0) (+i1)

14 TP
T € (18 ¢ — > ¢ (18)E).
where |+) = \1—5 (1&) + &) and |+i) = \1—5 (1£) + 7 |€)) are cardinal states on the equator
of the Bloch sphere.
PNAS 2024 Vol. 121 No. 31 2404298121

0.30

&, 0.30 -0.30

Fig. 4. The germanium MES for the second conduction bands, with Brillouin
zone boundary shown. The surface resembles a cuboid with openings at the
vertices. These openings connect to the central surfaces of the neighboring
zones via long tube-like structures, whose thickness is exaggerated by a factor
of 2 for visualization.

entanglement in only certain directions (tabulated in Table 1).
The surface where the determinant is 0 for the split-off valence
band is plotted in Fig. 5C, with the maximal-entanglement points
indicated.

4.2. Zero-Crossing Surfaces of g¢o¢. Contributions of the orbital
magnetic moment can have drastic effects on the singular values
of g,,, and on the surfaces in 4 space for which dez(g,,,) = 0.
Singular values of g, can be much larger than two when the
energy difference between different bands is small. (Singular
values of g must be < 2.) We see large values of gy, already
in Fig. 2.

When approaching high symmetry directions, because of the
occurrence of degeneracies in the singular values, our surfaces can
pinch together, giving rise to touching conical structures as in the
Fermi surfaces of semimetals such as graphite (38, 39). We see
such touchings for bands in both Si and Ge. These touchings are
known as Lifshitz critical points (40). This is associated with a
quantum phase transition which occurs when the value of det(g)
is varied, in which these conical touchings open as gaps switching
from the transversal to the longitudinal direction with respect to
the axis on which the cones lie. This section provides further
insights into the changes in topology of the surfaces of bands in
both Si and Ge, admitting multiple Lifshitz critical points on the
surface det(g,,,) = 0, resembling the situation with some Fermi
surfaces (40, 41).

In the case of the split-off valence band, the surfaces where
a’et(gm) = 0, for all three cases, i.e., Si, Ge, and GaAs, are
topologically spherical. As can be seen in Fig. 6, these surfaces do
not exhibit any conical touchings. We see that these surfaces are
generally larger than the ones for dez(gg) = 0.

All other cases exhibit nontrivial topologies. For the first
conduction band, Si exhibits a double surface around the I'-point.
The Inset of Fig. 7A depicts a cross-section of this complicated
surface. As can been seen, it is approximately a square frame

https://doi.org/10.1073/pnas.2404298121
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Fig. 5. MES surfaces of split-off bands (valence bands). (A) The surface of Si. (B) The surface of Ge. These surfaces are topologically spherical. (C) The split-off
bands of GaAs exhibit maximum spin-orbit entanglement only along the A and A directions. The gray surface is the surface where det(gs) = 0. The spin-orbit

entanglement is maximal only at the blue points on this surface.

surrounded by a wing-like structure. In the full 3D picture, these
have the form of two cuboids, one inside the other, extending
outward in the Z-direction and joining in the A and A-directions.
The six joinings in the cross-section are six conical touchings,
indicative of Lifshitz critical points.

The occurrence of these Lifshitz critical points is specific to
det(g,,,) = 0 and arises from symmetry. The Lifshitz transition
can be described as follows: For a slightly negative value of
det(g,,,), the conical touchings form gaps in the directions
transverse to the symmetry axes. This causes the surface to
have a nontrivial topology, because of the occurrence of holes
surrounding the symmetry axes. The inner surface, in this case,
is a surface of genus thirteen. In simple terms, it has the topology
of a kind of wiffle ball. However, for a slightly positive value
of det(g,,), the gaps instead open longitudinally along the
symmetry axes. The surface transitions into a double sphere,
i.e., whose genuses are both zero. The surrounding red and
blue satellite regions have trivial topology (genus 0) that remains
unaffected as det(g,,,) is varied through zero.

The det(g,,,) = 0 Ge surfaces of the second conduction band
turn out to be topologically even more complex. The central
surface is topologically a sphere. The second surface has a very
rugged form. It has openings in the six A directions. Fig. 7B
shows a cross-section of the entire set of surfaces in a plane
containing the 111-direction. The dashed lines in the figure are
additional surfaces with trivial topology, connecting into the
second Brillouin zone. The locations in the Brillouin zone where
these additional surfaces approach, but do not touch, our second
surface are not special.

One observes openings above and below the central surface,
corresponding to holes in the second surface. One sees the

A B

k)r 0.06

cross-section of the second surface in the figure as two separate
regions on the left and the right, but these are fully connected in
3D. On both the left and the right one sees two intersection
points, which are the cross-sections of some of the conical
touching points (of which there are eight overall), indicating
that this surface exhibits Lifshitz criticality. dez(g,,,) also exhibits
conical touchings on the second surface in the A directions,
but unlike for the Si case, these touchings occur only for
a finite positive value of the determinant. This surface, for
1 > det(g,,) > 0 is one of genus 13. For a slightly
negative value of der(g,,,), the conical touchings all discon-
nect in the other way, causing this second surface to have
genus 5.

5. Conclusion and Outlook

In this paper, we have provided a formalism for calculating the
g-tensor, and thus the g-factors, of any band at any given point in
the Brillouin zone. We apply this formalism using tight-binding
calculations for silicon, germanium, and gallium arsenide. The
g-tensor has two contributions, one from the spin magnetic
moment and one from the orbital magnetic moment. We provide
aderivation that links the old view, in which the orbital moment is
described using the antisymmetric effective mass, to a view which
identifies this moment as originating from the Berry curvature of
the energy band states, indicating orbital currents flowing inside
a wave-packet made of these band states. We show that these
points of view are fully consistent with each other.

We establish that, for any semiconductors with crystal point-
group symmetries Oj or Ty, bands of specific symmetry
must exhibit Bloch eigenstates with maximum spin—orbital

* 030 030

Fig. 6. (A-C)show surfaces on which det(g;,;) = 0 of the split-off bands for Si, Ge, and GaAs, respectively. Si and Ge surfaces are of comparable scales whereas

the GaAs surface almost covers the entire BZ.

10 of 12 https://doi.org/10.1073/pnas.2404298121

pnas.org



Downloaded from https://www.pnas.org by DEUTSCHES KREBSFORSCHUNGSZENTRUM DKFZ-HGF on January 16, 2025 from |P address 134.94.122.118.

0.100.10

Fig. 7. (A) Visualization of the surfaces defined by det(g;,;) = 0 for the first conduction band of Si. The central part is a double surface. The Inset shows
the cross-section of this central region and four spherical satellites in the A-directions. One can clearly note the conical touchings in the A and A symmetry
directions. The Lifshitz transition at det(g;,;) = 0 involves a change of genus of this surface from 0 to 13. Additional surfaces are present as elongated satellites
in the X and A directions. (B) Cross-section of the det(g;,:) = 0 Ge surface for the second conduction band. This cross-section is informative because it shows
four conical touching points (close to the central spherical surface) along the A directions. In this case as well, the Lifshitz transition changes the genus of the

surface from 5to 13.

entanglement. Because of the weakness of the spin—orbit interac-
tion in Si, the occurrence of this maximal entanglement occurs
quite close to the I'-point for this material. This is quite far from
the conduction band minimum along the A direction, where this
entanglement is quite small.

We hope that this work will establish a mindset in thinking
about the crystal g-factor. In no case that we have looked
at is the g-factor “boring,” with just small variations from
the nonrelativistic value. New considerations, mixing together
symmetry and topology, determine the very interesting structure
that we see in the crystal g-factors. This could be a harbinger of
new effects to be looked for in various nanostructured devices.
We mention only one idea, that the “wiggle well” (42) technique
can be used to selectively make states from particular parts of the
crystal Brillouin zone relevant in nanostructures. This technique
could be used to tease out information about, e.g., Lifshitz
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