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ARTICLE INFO ABSTRACT

Keywords: The wetness precondition of a catchment affects available soil water storage capacity and infiltration rate, thus
Flash flood influences flash flood generation. Remotely sensed (RS) soil moisture (SM) can provide valuable information on
Data assimilation catchment wetness, but typically only represents the top 5 cm of the land surface. However, hydrological models
ISQIZIgArZssion for flash flood simulation need to consider deeper layers to calculate the total soil water storage. Therefore, a key

challenge is to link RS SM to total soil water storage and assimilate RS SM into flash flood models to correctly
describe initial catchment wetness. In this study, we developed an approach to combine present and antecedent
RS SM to infer present soil water storage based on four regression models. The inferred soil water storage from
SMAP (soil moisture active passive) SM was assimilated into the operational LARSIM (Large Area Runoff
Simulation Model) hydrological model. We tested this new approach with 12 events in the headwater catchments
Korsch, Adenauer Bach and Fischbach in Germany. Results show that random forest regression performs the best
among the four regression models. The BIC (Bayesian Information Criterion) score suggests that regressions
considering antecedent RS SM can well infer soil water storage, resulting in R? of 0.85, 0.94 and 0.93 for the
Korsch, Adenauer Bach and Fischbach catchments, respectively. Compared to the open loop (without data
assimilation) simulations, our approach enhanced the general performance of event simulations with average
KGE increases of 0.09, 0.24 and 0.33 for the Korsch, Adenauer Bach and Fischbach, respectively; and the mean
error in the 12 simulated event peaks is reduced 15 %. Moreover, the simulation uncertainty is reduced, too. The
transferability of the proposed approach to other RS products is also discussed. Although assimilating RS SM can
enhance flash flood modeling, it is primarily affected by the uncertainty in precipitation. In the future, the
proposed approach should be tested with more catchments and events to verify its general validity.

1. Introduction

Studies have shown that the frequency of short-duration extreme
rainfall events is increasing on a global scale in response to climate
change (Fowler et al., 2021; Guerreiro et al., 2018; Westra et al., 2014).
This type of extreme rainfall can induce flash flood events. The term
“flash flood” is typically defined as a fast-responding extreme flow of
water into normally dry areas triggered by intense rainfall within few
hours (Flamig et al., 2020; Saharia et al., 2017). Such events often occur
in small catchments with an area of a few hundred square kilometers or
less (Zhai et al., 2021). Due to their rapid onset, there is a very limited
opportunity and time for an effective response (Hapuarachchi et al.,
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2011). As a result, flash floods can cause severe damages to infrastruc-
ture and the environment, as well as endanger human lives and live-
stock. They are among the world’s deadliest climate-related natural
hazards (Ma et al., 2021; Zhai et al., 2021). It is therefore of great
importance to improve flash flood forecasts and reducing associated
uncertainties by any means.

As with other hydrological modeling, forecasts and simulations of
flash floods are affected by a number of uncertainties. These un-
certainties encompass model structure uncertainty (Beven, 1993; Butts
et al., 2004; Chang et al., 2023), model parameter uncertainty (Kavetski
et al., 2006a; Liu et al., 2022; Schoups and Vrugt, 2010), and errors in
meteorological forcing and observations (Bardossy et al., 2022; Kavetski
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et al., 2006b; Pianosi and Wagener, 2016; Schalla et al., 2023), e.g.,
streamflow and soil moisture. In addition to these uncertainties, the
initial condition, particularly soil wetness, can significantly impact the
generation of floods, including the magnitude and volume of floods, due
to the influence of the available soil water storage (Mahdi El Khalki
et al.,, 2020; Nikolopoulos et al., 2011; Tramblay et al., 2012). The
implementation of continuous measurements of soil moisture (SM) can
facilitate a more accurate quantification of the wetness condition of an
area. Consequently, there is potential for improvement in flash flood
simulations with SM measurements to determine the initial model
conditions prior to the event (Cenci et al., 2017; Crow et al., 2017;
Nikolopoulos et al., 2011). In-situ SM measurements can provide accu-
rate SM along the vertical soil profile, however, it is challenging to
obtain data across a larger spatial area. With the development of
advanced remote-sensing techniques, more remotely sensed soil mois-
ture (RS SM) products are being produced. For example, the Soil mois-
ture Ocean Salinity (SMOS) (Kerr et al., 2012), Soil Moisture Active
Passive (SMAP) (Entekhabi et al., 2010), Advanced Scattermeter
(ASCAT) (Bartalis et al., 2007), and Advanced Microwave Scanning
Radiometer-2 (AMSR-2) (Parinussa et al., 2015) have been launched to
provide global-scale SM products. In comparison to other RS products,
SMAP has demonstrated superior performance in estimating SM (Chan
et al., 2018; Li et al., 2022). Recent research suggested that the inte-
gration of RS technologies has the potential to transform soil measure-
ment practices, offering comprehensive, scalable, and cost-effective
solutions (Abdulraheem et al., 2023). While they can represent spatial
averaged SM at various available spatial resolutions, the disadvantage is
that they normally indicate SM of the topsoil layer (top 5 cm) only. It is
therefore, crucial to establish the optimal methodology for utilizing RS
SM in hydrological simulations, with a view to enhancing flash flood
simulations.

Assimilation of RS SM measurements has been widely used to
improve the performance of land surface models (De Lannoy and
Reichle, 2016; Lievens et al., 2016; Naz et al., 2019). Lievens et al.
(2016) demonstrated that the assimilation of RS SM at the catchment
scale resulted in enhanced predictive skills. Naz et al. (2019) showed an
improvement of SM and runoff simulations at a spatial resolution of 3
km across Europe through assimilating RS SM. For assimilating RS SM
observations into land surface models (LSMs), RS SM can be directly
linked to simulated SM by LSMs, as LSMs possess multiple vertical soil
layers that can correspond to SM measurements at varying depths. In
contrast to LSMs, hydrological models are less spatially distributed,
comprising sub-catchments, multiple hydrological response units
(HRUs), or even a single bucket for the entire catchment. Nevertheless,
studies have demonstrated the utility of RS SM observations in
enhancing hydrological simulations (Crow and Ryu, 2009; Han et al.,
2012; Houser et al., 1998; Lopez Lopez et al., 2016; Pauwels et al., 2001;
Pauwels et al, 2020). The major aim of these studies is to improve
streamflow simulations at the daily scale. The models applied are less
complex in terms of soil representations than the abovementioned land
surface models, but still comprise a few soil layers, allowing for direct
linkage of RS SM to the top soil layer of a model.

However, there are hydrological models that are widely used or in
operation that only consider a single soil layer. Examples of such models
include the HBV model (Lindstrom et al., 1997), Hymod (Wagener et al.,
2001), varKarst (Hartmann et al., 2013) and LARSIM (Large Area Runoff
Simulation Model, Bremicker, 2000; LEG, 2023). Note that LARSIM will
be used in our study as the flash flood model as it is used for operational
streamflow and flood predictions in multiple states within Germany.
One limitation of this type of models is the inability to link the RS SM of
the top soil layer to the entire model soil water storage. The pre-
processing of RS SM is a requisite step for data assimilation in models
that contain a single soil layer. Few studies have investigated the
appropriate usage of RS SM in models with a single soil layer. De Santis
et al. (2021) rescaled RS SM to enable their assimilation into hydro-
logical simulations for over 700 catchments in Europe. Laiolo et al.
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(2016) employed an alternative rescaling approach to calculate the Soil
Water Index (SWI), thereby establishing a link between RS SM and
model storage. Nevertheless, how to optimally use RS SM in flash flood
simulations is rarely reported, particularly with regard to the hourly
temporal resolution. Studies on flash floods currently focus on ensemble
simulations to quantify uncertainty (Flamig et al., 2020; Quintero et al.,
2012), risk assessment and susceptibility mapping (Arabameri et al.,
2020; Ma et al., 2021) and early warning system development (Corral
et al.,, 2019; Zhao et al., 2022). Further investigation is required to
improve flash flood predictions using assimilation of RS SM. The core
research question is then how information of RS SM time-series can be
optimally exploited and linked to model soil water storage in order to
improve flash flood model predictions.

In this study, we propose to use present and historical memory of RS
SM to infer the present total soil water storage. The historical memory of
RS SM is represented by a certain number of antecedent RS SM. These
antecedent RS SM (historical memory) in the top soil can travel to
deeper soil layers later in time, thus a series of past antecedent RS SM
can provide information on the current vertical SM distribution to derive
the present total soil water storage. The SMAP SM retrievals were
selected as the target RS measurements due to the superior spatial res-
olution, quality, and accuracy of SMAP in comparison to other RS
products. To improve flash flood simulations, we assimilate the inferred
soil water storage into the LARSIM model coupled to PDAF (parallel data
assimilation framework). We test our approach in three different
catchments with four events per catchment (12 events in total). Four
regression methods with varying degrees of complexities are assessed to
establish a relationship between RS SM and model soil water storage.
Furthermore, we demonstrate the transferability of our approach to
other RS products. Our work will provide a feasible method to use RS SM
measurements of the top soil layer in hydrological models that contain
only a single soil layer, with the aim of enhancing flash flood and
streamflow forecast.

2. Study sites and data

We set the following criteria to select our study sites: 1) hourly
forcing and streamflow observations must be available; 2) flash flood
events must have occurred in the past 10 years; 3) catchments should be
of a relatively small size, considering flash flood occurrence character-
istics; and 4) LARSIM model configurations must be available. Finally,
three catchments were selected as our test sites: Adenauer Bach, Fisch-
bach and Korsch (Fig. 1). The three catchments were selected to repre-
sent two distinct types of systems susceptible to flash floods. Adenauer
Bach and Fischbach represent mountainous rural catchments, while
Korsch represents an urbanized catchment comprising a considerable
proportion of impervious surface areas susceptible to surface runoff
generation. Moreover, these three sites allow the testing of our approach
in two distinct settings of the LARSIM model, corresponding to different
federal states of Germany. All three catchments are composed of basic
hydrological response units (HRUs). Each HRU has its own parameters
based on soil and land cover information. A group of HRUs constitute
irregular sub-catchments for the Adenauer Bach and Fischbach catch-
ments and 1 km x 1 km regular grids for the Korsch catchment.

The Adenauer Bach catchment is located in the federal state of
Rhineland-Palatinate, Germany (Fig. 1). The area of the catchment is 57
km?, with the Adenauer Bach river flowing into the Ahr river and finally
ending in the river Rhine. The mean streamflow at the Niederadenau
gauging station is 0.31 m®/s. The mean annual precipitation (year
2007-2021) is 662 mm/yr, with summer precipitation (June to August)
accounting for 34 % of the total annual precipitation at the Niirburg-
Barweiler meteorological station. The mean annual temperature is
9.0 °C. The catchment is predominantly covered by forest, accounting
for 72 % of the total area. Two rainfall stations close to the catchment
are available for the collection of precipitation forcings (Table 1). The
streamflow gauge was installed in 2014, and hourly measurements have
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Fig. 1. Three study sites: Adenauer Bach, Fischbach and Korsch catchments, where Adenauer Bach and Fischbach represent small mountainous catchments while
Korsch represents a more urbanized catchment. The figure shows the location, rainfall stations, streamflow gauging stations and the distribution of land use types of
the three catchments.

Table 1
Description of forcing datasets, RS SM and streamflow observations.
Category Data Temporal Station IDs of Korsch ~ Station IDs of Station IDs of Source
resolution Adenauer Bach Fischbach
Streamflow Time-series streamflow Hourly Denkendorf Korsch Niederadenau Gerach2 https://udo.lubw.baden-wuerttemberg.
(4414) (2718085500) (2541075000) de/public/pages/home/index.xhtml
https://www.hochwasser.rlp.de/
Forcingl Precipitation Hourly 00279, 03278, 03660, 04219 0038, 0053, Deutscher Wetterdienst (DWD) https
04160, 04928, 0360 ://opendata.dwd.de/climate_environment
04931, 06275 /CDC/observations_germany/climate/h
Air temperature 04160, 04928, 03490, 03660 0053, 0360 ourly/
04931, 06275
Air pressure 04928, 04931 03660 2385
Global radiation 04928 05100 0053, 0360
Relative humidity 04160, 04928, 03490, 03660 0053, 0360
04931, 06275
Wind speed 04928, 04931 03660 0053, 0360
Soil SMAP (SPL2SMP_E) Daily 9 km x 9 km https://nsidc.org/data/spl2smp_e/vers
moisture ions/5
AMSR-2 10 km x 10 km https://hydrol.gesdisc.eosdis.nasa.gov/d

(LPRM_AMSR2_DS_A_SOILM3)

ASCAT (ASCAT SSM CDR v7
12.5 km)
SMOS (BEC-SMOS-PD-SM-L3v4)

12.5 km x 12.5 km

25 km x 25 km

ata/WAOB/LPRM_AMSR2 DS A SO
ILM3.001/
https://navigator.eumetsat.in/prod
uct/EO:EUM:DAT:0307
https://bec.icm.csic.es/new-release-of-
bec-smos-soil-moisture-products/

! Meteorological Station IDs: 00279 = Baltmannsweiler-Hohengehren; 03278 = Metzingen; 04160 = Renningen-Thinger Hof; 04928 = Stuttgart (Schnarrenberg);
04931 = Stuttgart-Echterdingen; 06275 = Notzingen; 03660 = Niirburg-Barweiler; 03490 = Neuenahr, Bad-Ahrweiler; 04219 = Rodder; 05100 = Trier-Petrisberg;
0038 = Bruchweiler; 0053 = Fischbach; 0360 = Leisel; 2385 = Idar-Oberstein.


https://udo.lubw.baden-wuerttemberg.de/public/pages/home/index.xhtml
https://udo.lubw.baden-wuerttemberg.de/public/pages/home/index.xhtml
https://www.hochwasser.rlp.de/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/
https://nsidc.org/data/spl2smp_e/versions/5
https://nsidc.org/data/spl2smp_e/versions/5
https://hydro1.gesdisc.eosdis.nasa.gov/data/WAOB/LPRM_AMSR2_DS_A_SOILM3.001/
https://hydro1.gesdisc.eosdis.nasa.gov/data/WAOB/LPRM_AMSR2_DS_A_SOILM3.001/
https://hydro1.gesdisc.eosdis.nasa.gov/data/WAOB/LPRM_AMSR2_DS_A_SOILM3.001/
https://navigator.eumetsat.in/product/EO%3aEUM%3aDAT%3a0307
https://navigator.eumetsat.in/product/EO%3aEUM%3aDAT%3a0307
https://bec.icm.csic.es/new-release-of-bec-smos-soil-moisture-products/
https://bec.icm.csic.es/new-release-of-bec-smos-soil-moisture-products/
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been recorded since that time. The Fischbach catchment is also located
in the federal state of Rhineland-Palatinate, Germany (Fig. 1). It has an
area of 63 km?, with the river Fischbach flowing into the river Nahe and
also ending in the river Rhine. The mean streamflow at the Gerach 2
gauging station is 0.62 m>/s. The mean annual precipitation (year
2014-2022) is 665 mm/yr and summer precipitation (June to August)
accounts for 27 % of the total annual precipitation at the Fischbach
meteorological station. The mean annual temperature is 9.9 °C. Forest
covers Fischbach catchment for about 48 % of the total area. Three
rainfall stations situated close to the catchment are available to collect
precipitation forcing data (Table 1). The Korsch catchment is close to the
city of Stuttgart, located in the federal state of Baden-Wiirttemberg,
Germany (Fig. 1). Compared to Adenauer Bach and Fischbach, it has a
large proportion of built-up areas, ca 34 %, followed by agricultural land
accounting for 30 %. The total area of the Korsch catchment is 123 km?,
with a mean streamflow of 1.31 m®/s. The Kérsch river flows into the
Neckar river which also ends up in the river Rhine. The mean temper-
ature is around 10.5 °C, while the annual mean precipitation (year
2007-2021) is 657 mm/yr with the summer precipitation (June to
August) accounting for 38 % of the total precipitation at the Stuttgart-
Echterdingen meteorological station. The Korsch catchment has six
available precipitation stations including one within the catchment
(Table 1). Hourly streamflow has been measured since 1980. Finally, the
LARSIM model was configured. The Adenauer Bach and Fischbach
catchments were simulated with 49 and 35 irregular sub-catchments
(comprising 1985 HRUs and 1825 HRUs), respectively. In contrast, the
Korsch catchment was modeled with 123 regular rectangular grid cells
(comprising 2434 HRUs).

The hourly meteorological forcing data (Table 1), including precip-
itation, air temperature, air pressure, global radiation, relative humidity
and wind speed, drive the flash flood simulations. They were specifically
used to calculate effective precipitation and potential evapotranspira-
tion for the studied catchments. The LARSIM model for the three test
sites has been calibrated by the corresponding state agencies according
to the guidelines given by Haag et al. (2020). Hourly streamflow
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observations were used to compare with event simulations with or
without data assimilation. The SMAP SM retrievals were obtained for
the sake of data assimilation. Table 1 provides additional details
regarding the data.

3. Methods

The true SM at different soil depths can be affected by many factors,
e.g., vegetation types and soil characteristics, but is largely influenced
by past infiltration events. Soil moisture content is not homogeneous in
the vertical direction. However, the LARSIM model, which is used for
flash flood simulations, only contains a single soil layer representing the
total soil water storage. The RS SM only represents the upper 5 cm of
soil, but the antecedent RS SM may provide insights into past infiltration
processes in deeper soil layers. Based on this idea, we built the rela-
tionship between the current model soil water storage and RS SM
considering current and antecedent measurements. The optimal rela-
tionship was obtained through the application of several regression
models, including linear, polynomial, random forest (RF), and long
short-term memory (LSTM) models (Fig. 2). Through that, we inferred
current total soil water storage and assimilated it into the coupled
LARSIM-PDAF model to improve flash flood simulations. The key
components of the framework are illustrated in Fig. 2.

3.1. Flash flood model

In this study, we used LARSIM (Large Area Runoff Simulation Model,
Bremicker, 2000; LEG, 2023) to simulate flash floods. The reason is that
it has been applied in several federal states in Germany and a few other
countries for operational purpose, including flood forecasts and hydro-
logical predictions (Bremicker et al, 2013). Therefore, improvements as
documented in this work can be incorporated to enhance the operational
performance. LARSIM uses irregular sub-catchments or regular (1 km x
1 km) grids to model the study area of interest. Furthermore, small
hydrological response units (HRUs) are used within a sub-catchment or

Model “True” Remote sensing
a single layer soil profile top 5 cm
i s i / t=i
R / t=1i1
Conceptualization .
Simplification
¢-=-=--

Regression: model & historical memory in RS SM

Infer current soil water storage

]
4
without DA with DA

= Flash flood model
7]

LARSIM
5 .g’ Enhancing flash
;,' g— + » flood forecast
"g o Data assimilation
o PDAF

Fig. 2. Schematic of the framework for assimilating RS SM into flash flood simulations. It describes the concept of using current and multiple antecedent RS SM to
infer the current total soil water storage and assimilating the total soil water storage in flash flood models.
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grid cell, allowing for the consideration of high-resolution spatial in-
formation. In this study, LARSIM was executed at an hourly time step for
event-based simulations.

LARSIM describes the water balance of a catchment by considering
various hydrological processes, including interception, snow accumu-
lation and melting, evapotranspiration, infiltration, soil water storage,
runoff generation and channel routing. Since the focus of our study is
simulating flash floods, which typically occur in summer months, we
focus here on soil water storage and different runoff generation pro-
cesses. For flash flood simulations, we used a configuration of soil water
storage with four runoff components. Furthermore, the dynamic infil-
tration module, originally developed by Steinbrich et al. (2016) was
employed. It accounts for matrix infiltration as well as infiltration via
macropores and shrinkage cracks on a physical basis (Haag et al., 2022).
Soil water storage is calculated with the water balance equation Eq. (1).
The soil-moisture — saturated-areas function Eq. (2) is used to calculate
the average saturation of the catchment’s area.

Wol(t+1) = Wo(t) + P(t) — Ea(t) — QSpa(t) — QS (t) — QS;(t) — QSx(t)
¢8)

b
%:1—(1—%) @

m

where Wy (t) [mm] denotes the amount of water in the soil storage at the
time t; P(t) [mm] is water from precipitation and snow melt; E,(t) [mm]
is the current evapotranspiration; and the four runoff components are
QSp»(t) [mm], QSp(t) [mm], QS;(t) [mm] and QSp(t) [mm], represent-
ing fast direct runoff, slow direct runoff, interflow and baseflow,
respectively. ¢ [%] is the portion of saturated areas in the catchment
area. W, [mm] denotes the maximum soil water storage, and b [-] is a
shaping factor.

To calculate the Horton overland flow represented by the fast direct
runoff QSp,, infiltration is simulated on a physical basis, using soil
physical parameters and initial soil moisture, and accounting for matrix
infiltration as well as infiltration through macropores and shrinkage
cracks (Haag et al., 2022):

Liot = Inatrix + Imp + I (3)

0,P < LAt

Qp2 = {P - thAt,Pw; LAt @
Where I,,s [mm/h], Inggix [mm/h], I,, [mm/h] and I, [mm/h] represent
total infiltration, matrix infiltration, macropore infiltration and infil-
tration from shrinkage cracks, respectively. At = 1 h, representing the
computational time interval. The other three runoff components are
simulated using process-oriented conceptual approaches. Slow direct
runoff (QSp) is calculated by an explicit soil moisture accounting func-
tion (Beven, 2012), where QSp increases with increasing soil water
storage. Lateral drainage toward interflow (QS;) and vertical percolation
toward base flow (QSp) are generally close to zero for soil water storage
below field capacity. Both flows increase exponentially, when field ca-
pacity is exceeded and coarser pores are filled with water. The algo-
rithms used for the two different models are described in detail in
chapters 3.6.3 and 3.6.7 for Korsch and in chapter 3.6.9 for Adenauer
Bach and Fischbach by LEG (2023).

To setup a LARSIM model, physical parameters are derived from
digital elevation models and digital maps of soil properties, land cover,
and river networks (Bremicker et al., 2013; Haag et al. 2022). There are
also conceptual, catchment-specific parameters that are calibrated based
on historical observations. Thus, in our study we directly use the cali-
brated parameters. However, to cover parameter uncertainties for
ensemble generations, we consider uncertainties of catchment-specific
parameters that are relevant for flash flood simulations. These param-
eters are described in Tables S1-S3 in the supplement. In our study,
LARSIM runs at an hourly resolution, driven by the hourly forcings
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described in Table 1, and generates hourly runoff output and soil water
storage, which are then used to couple LARSIM with data assimilation.

3.2. Regression between RS SM and model soil water storage

3.2.1. Four regression models

To cover a wide range of conditions for building the relationship
between model soil water storage and RS SM, we used four different
regression models: a widely used linear regression model, a polynomial
regression model and machine learning methods including random
forest regression and long short-term memory (LSTM). Eq. (5) describes
the general form of the regression models. The total soil water storage at
t = i (Si[mm]) can be obtained from a function with input variables (Gi,
60;-1,,6;p) and a residual & [mm], where 6; [m3/m?], 6,1 [m%>/m?]
and 6;_, [m®/m®] denote the RS SM at the present day t = i, one day
before i (t = i-1) and p days before i (t = i-p).

Si =f(6:,0i-1, .0 p) +& (5)

Linear and polynomial regressions are described by Eq. (6) and (7). Note
that for the polynomial regression, we tested second (k = 2) and third (k
= 3) order regressions only to avoid overfitting.

Si =Po+ 10+ P01+ + P10 pt e (6)
Si=Po+ PO+ B0y + -+ B, +E %)

where g, [-1, p; [-], B [-], B [-] are the regression constants.

Random forest is a powerful ensemble-based learning algorithm that
provides classification and regression (Breiman, 2001) and has been
widely used in hydrological studies (Desai and Ouarda, 2021; Liu et al.,
2020; Zhang et al., 2018). In this study, we use the regression option to
establish the relationship between RS SM and model soil water storage.
It builds an ensemble of decision trees trained with the bagging method
to make more accurate predictions. The random forest regression is set
up in Python using the “RandomForestRegressor” method within the
“sklearn.ensemble” package (Pedregosa et al., 2011) using the default
value of 100 for the number of trees in the forest.

LSTM is a special type of recurrent neural network (RNN) that can
provide a short-term memory for a very long timestep (Hochreiter and
Schmidhuber, 1997). It can learn long-term dependencies between input
and output variables (Kratzert et al., 2018). Therefore, it could be good
for our regression purposes. In this study, three layers in the LSTM were
used and the unit number, the dropout rate within these layers, and the
learning rate were hyperparameters for tuning. The implementation of
the LSTM and the automatic parameter calibration are based on the
open-source deep learning library “Keras” (Chollet, 2015).

3.2.2. Preprocessing of SMAP SM and model soil water storage

Our aim is to improve flash flood modeling for small catchments
(~100 km?). However, SMAP SM has a spatial resolution of 9 km x 9
km, which cannot cover detailed SM for small HRUs (~few hectares) or
model grids (~1 km?). Due to the problem of the coarse spatial resolu-
tion of SMAP SM, the direct comparison of SMAP SM (or regressed SM)
to in-situ SM observation is inappropriate given the large spatial het-
erogeneity. However, we can derive catchment averaged SM based on
SMAP and derive “true” catchment averaged soil water storage based on
LARSIM simulations considering precipitation uncertainty. The regres-
sion is then built between the catchment averaged SMAP soil moisture
and catchment averaged model soil water storage.

We use daytime SM retrievals of SMAP, which are from the ascending
overpasses. It has missing values, about one in three days. To have
continuous data for the regression, linear interpolation is used to fill in
these missing values.

A good estimate of soil water storage is crucial for the regression.
Uncertainty in precipitation largely affects model simulations of soil
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water storage. Therefore, an ensemble of 1000 members was generated
to account for precipitation uncertainty. The log-normal multiplicative
error model has been broadly used for precipitation perturbation (Crow
et al., 2011; Li et al., 2015) and here it was applied to perturb precipi-
tation for all ensemble members. In this study, the mean and standard
deviation of the log-normal distribution were set to 1 and 0.25,
respectively. Spatial correlations between different meteorological sta-
tions are considered, but temporal correlations are not considered in this
study. With one ensemble member using the original precipitation, there
is a total of 1001 ensemble members. The best 32 performing ensemble
members are selected according to the Kling-Gupta efficiency (KGE) for
streamflow. Note that these 32 ensemble members are all better than the
simulation using original precipitation in terms of streamflow simula-
tions for all catchments. The number of 32 ensemble members is selected
to be the same as the number of the ensemble size for later data
assimilation. Finally, the mean soil water storage (pseudo observations)
of the top 32 simulations is used to build the regression. The model
simulation with 32 well-performed ensemble members incorporates
precipitation uncertainty both in space and time to a large extent.
Therefore, the derived mean soil water storage from these 32 ensemble
members can closely represent the “true” catchment averaged soil water
storage despite uncertainties arising from unperfect model structure.
Given unavailable spatially distributed in-situ SM measurements, the
ensemble soil water storage simulations form the semi-independently
indirect measurements (the pseudo observations) to validate our
regression approach. Despite this limitation, if our regression can match
well the pseudo observations, it could capture well the catchment
average response.

3.2.3. Regression selection

We set up regression models for cases using RS SM considering t = i,
fromt=i5tot=1,fromt=i-10tot=1, ..., and from t =i-180 to t = i.
The Bayesian Information Criterion (BIC) is used to determine the
optimal number of antecedent days of observations to include in the
regression (Laio et al., 2009). As the number of antecedent observations
included in the regression increases, the BIC initially decreases, but with
continuous increasing of antecedent observations, the BIC begins to
increase. The lowest point of the BIC indicates the optimal balance be-
tween model fit and complexity. This indicates the optimal number of
antecedent days when building the regression. The BIC is calculated by
Eq. (8).

BIC = —2In(L) +k x In(n) (8)

where L represents the maximized likelihood of the model, which
measures how well the model fits the data. k is the number of inde-
pendent variables. n is the sample size. In practice, —2In(L) is repre-

n

sented as —2In(L) =n x In (SS—E> with SSE the sum of squared errors.

The coefficient of determination R? is also used to measure the
goodness of fit of the regression models. Among the four regression
models, the one with the highest R? is used to infer soil water storage
from SMAP SM.

SN (- x)?)

R*=1-
S (- %)

©)]

where xi, and xi, are the i-th value of observations and model simula-
tions, respectively. X, is the mean of observations. N denotes the total
number of observations.

3.3. Data assimilation

PDAF (parallel data assimilation framework) was selected as the data
assimilation tool because it provides many DA methods and supports
other useful options such as localization for future development (Nerger
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et al.,, 2005). It also provides a complete and powerful package for
coupling with LARSIM. We used the Ensemble Kalman Filter (EnKF) to
perform sequential data assimilation.

3.3.1. Ensemble Kalman filter (EnKF)
The EnKF (Evensen, 1994) can be described as follows:

Xf: <X€7Xf27'"’x{wm> (10)
Xf:i nensX{ an
nens <

Il
-

i

where X{ contains the prior model states (before assimilation) for the i-
th ensemble member. In this study, X’f contains the soil water storage of

the LARSIM model. x is the ensemble mean and nens denotes the
ensemble size.

P — -1 xx7 with X — (x{ X x,-X .. X f)?) (12).

nens—1 nens

where P is the covariance matrix of the model states estimated from
ensemble simulations prior to DA updates. The updated soil water
storages after assimilation are given by:

X{ =X, +K(y ~Hx]), with K = PH" (HPH" +R) ' (13).

where X{ contains the updated model states by data assimilation, y;
is the observation sampled from the distribution with mean equal to the
measurement (the soil water storage derived from RS SM based on a
suitable regression model) and covariance R. K is the Kalman gain. H
represents the observation operator. With the regression approach, we
can derive the catchment averaged soil water storage based on RS SM.
Using soil water index (SWI, see section 3.3.2), we can derive soil
saturation degree and thus calculate catchment averaged soil water
storage. The assimilation is based on HRUs to better represent the spatial
heterogeneity. The weight of each HRU to the catchment averaged soil
water storage is set as the areal fraction (the area of each HRU divided by
the total catchment area).

Given the coarse resolution of RS SM, the catchment averaged soil
water storage was assimilated. The catchment averaged soil water
storage from RS SM was derived using our approach (this is catchment
averaged observation), and next the observation operator is applied on
the simulation to derive the catchment averaged soil water storage
simulation considering the areal fraction of each HRU and the simulated
soil water storage for each HRU. With help of the Ensemble Kalman
Filter (EnKF), soil water storage of all the HRUs was updated. This al-
lows to find differences in spatially heterogeneous soil saturation of
HRUs for open loop runs (no assimilation of RS SM) and data assimila-
tion runs.

3.3.2. Ensemble generation and data assimilation settings

Compared to directly using RS SM, the soil water index (SWI) can
account for the antecedent soil moisture conditions (Laiolo et al., 2016).
In addition to open loop (OL) simulations, we also compare our
approach to data assimilation using SWI (DA_SWI).

SWI,, = SWI 1 + Kn (SDon — SWI, 1) (14)

K, = L (15)

B <trty.,1>
Kn—l +e T

where SWI, is the SWI at time step t,. SD, , represents the observed soil
saturation degree at time t, in the range [0,1], which is calculated as the
RS SM at time t, normalized by the maximum RS SM over the entire
period. K, is the gain at time t,, with K; = 1 and SWI; = SD,;. The
parameter T characterizes the temporal variation of SM within the root-
zone profile and was set to 10 days as suggested by Laiolo et al. (2016).
The catchment averaged SWI is calculated and later used for DA.
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After testing different ensemble sizes (16, 32, 64, 96, 128), using 32
ensemble members performs well for data assimilation and maintains an
efficient computation. Therefore, the ensemble size was 32 in our study.
To generate ensemble members, uncertainty in precipitation, model
parameters and initial model soil water storage was considered.

As already used in other studies for precipitation perturbation (Han
et al., 2014; Strebel et al., 2022), we used the multiplicative log-normal
distribution with the mean equal to 1 and the standard deviation equal
to 0.25. The temporal correlation is not included but the spatial corre-
lation between different meteorological stations is included in the
perturbation.

In addition to the perturbation of the meteorological forcings,
catchment model parameters are perturbed as well. A normal distribu-
tion is adopted for each parameter with a mean equal to the prior cali-
brated value and a standard deviation given in Tables S1-S3. If the
perturbed values are outside a suggested parameter range, they are set to
the corresponding lower or upper limits.

To characterize the uncertainty in the initial model soil water stor-
age, the model is run with calibrated parameters to the time point when
data assimilation will be conducted, which is the time with the available
SMAP SM just before the event and the catchment averaged initial soil
water storage S is calculated. A normal distribution to perturb initial
soil water storage is adopted for the initial soil water storage with a
mean equal to S;; and a standard deviation 20 % of the maximum soil
water storage capacity Spqx. To evaluate different degrees of uncertainty
in the initial soil water storage, different perturbations with standard
deviations of 10 %, 20 % and 30 % of S;q are tested. Among them,
perturbations with standard deviation 20 % of S, provide a good
moderate spread of ensemble simulations. Finally, the perturbed initial
soil water storage is constrained to the range of [0, Spax].

Excluding events with missing precipitation measurements since
2015, we used the four largest events from May to October (since our
goal is summer events and to avoid snow influence) for each catchment
to test our approach (Table 2). The simulation with 32 ensemble
members is run for the flood events to obtain the open loop (OL)
simulation, which is the ensemble simulation without data assimilation.
For the simulations with data assimilation, the data assimilation is first
applied to update the initial soil water storage of each ensemble member
and then the simulation of the flood event is performed.

3.4. Performance metrics and statistical test

We use the Kling-Gupta efficiency (KGE) to measure the general
performance of model simulations (Gupta et al., 2009) and use percent
error (¢) to denote the simulation error for flood peaks.

KGE=1-1/(r—1) + (@~ 17+ (§ - 1) a6)
e= ’(X’”X;X) x 100% 17)
Table 2

Simulated events in the Korsch, Adenauer Bach and Fischbach catchments.

Catchment Date Peak discharge [m®/s]
Korsch 2021-6-28 57.44
2018-6-7 34.24
2016-5-30 28.28
2019-8-7 25.07
Adenauer Bach 2021-7-14 46.86
2016-6-2 21.99
2015-9-1 6.46
2019-10-20 2.33
Fischbach 2018-5-27 59.23
2018-6-1 13.14
2016-5-30 6.68
2021-6-24 5.51
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with ¢ =% and § = ’/‘72', where (i,,, 6m) and (y,, 0,) are the mean and
standard deviation of model simulations X,, and observations X,,
respectively.

To assess whether improvements of flash flood modeling by the
assimilation of RS SM into the LARSIM model is statistically significant,
the one-tailed paired Wilcoxon signed-rank test (a non-parametric test)
was performed. Based on all 12 simulated events from the three studied
catchments, the paired data (OL vs. DA) were prepared. Then the sta-
tistical test was carried out for the general event performance KGE,
percent error and uncertainty of the simulated events. Here the mean
and median of 32 ensemble simulations are used. The event uncertainty
is calculated as: (max — min of the ensemble simulations) / observation.
The significance level is 0.05.

4. Results
4.1. Performance of regression models

Comparing pairs of observed RS SM and LARSIM soil water storage
(Fig. 3a, d and g) in the Korsch, Adenauer Bach and Fischbach catch-
ments, we can see that a specific RS SM can correspond to a wide range
of LARSIM modeled soil water storage. This suggests a non-linear and
strongly scattered relationship between RS SM and LARSIM soil water
storage, indicating that it is not appropriate to use only a single RS SM at
a specific date to infer the soil water storage at the same date. Fig. 3b, e
and h show the performance of the random forest regression for the
three study catchments. As more antecedent RS SM information is
included in the regression, R? increases rapidly, but the increase slows
down later as RS SM information is further increased, and finally ap-
proaches a stable value. The BIC values suggest that the optimal number
of antecedent days of RS SM for the regression is 120, 105 and 105 for
the Korsch, Adenauer Bach and Fischbach catchments, respectively. This
is also confirmed by the very limited increase in R?> when using more
antecedent days, indicating that using more information than suggested
by the BIC does not significantly improve the relationship between RS
SM and soil water storage. Fig. 3c, f and i show that after including 120,
105 and 105 antecedent days of RS SM, very good regressions are built
for all the catchments. The R? values are 0.85, 0.94 and 0.93 for the
Korsch, Adenauer Bach and Fischbach catchments, respectively. We also
see that when the number of antecedent days exceeds 100, the increase
in the regression performance is very small for the three catchments.
Therefore, if the BIC analysis is not desired, the number of 100 ante-
cedent days can be used for the regression. Our analysis shows that by
considering an appropriate historical memory in RS SM, we can well
infer the total soil water storage for the LARSIM model even though RS
SM represents only the top 5 cm of soil.

4.2. Improvement in flash flood simulations

As the OL and DA simulations use the same model structure and
parameter perturbation, the influence of assimilating RS SM to improve
the initial soil moisture condition can be verified. Fig. 4 shows that
assimilating RS SM based on SWI does not result in a simulated ensemble
mean discharge consistently closer to the observations (compared to OL
simulation) for the three studied catchments. The simulated ensemble
mean by data assimilation using SWI is improved only for three out of 12
events, while the other events show a deteriorated performance
compared to OL simulation. Our new approach DA_RF, using antecedent
RS SM based on RF results in simulated discharge being closer to
observed discharge for 10 out of 12 events, while the other two events
show very similar simulated ensemble mean discharge compared to OL
simulation. Uncertainty is reduced as measured by the range of flood
peak simulations. In particular, it is greatly reduced for the Adenauer
Bach and Fischbach catchments (Fig. 4e — 1). However, even with the
improvement by RS SM assimilation, we still have overestimation and
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Fig. 3. Relationship between observed RS SM and LARSIM soil water storage (a, d and g), the change in BIC and R? (coefficient of determination) with the change in
the number of antecedent days considered in the regression model (b, e and h), and the fit of LARSIM soil water storage and regressed soil water storage by RF using
RS SM for the case considering 120, 105 and 105 antecedent days (denoted in c, f and i) for the Korsch, Adenauer Bach and Fischbach catchments, respectively. The
model soil water storage in this figure is the mean of the 32 best performing ensemble members (see sect. 3.2.2). RF regression outperforms linear regression,
polynomial regression and LSTM (see Fig. S1), so only the RF regression is presented here.

underestimation of discharge for some events in the three studied
catchments. This indicates that there may be a very large uncertainty in
the magnitude and the spatial pattern of precipitation, which largely
affects the peak and shape of the flash flood simulation.

Compared to the OL simulations, the DA_SWI simulations have both
improved and deteriorated KGE performance, and this inconsistency
indicates some risks by using DA_SWI to improve flood modeling
(Fig. 5). However, compared to the OL simulations, the ensemble
members with lower performance were improved by DA_RF (Fig. 5). Our
approach DA _RF enhanced the general performance with KGE increases
of 0.09, 0.24 and 0.33 (average increase of four events per catchment)
for the Korsch, Adenauer Bach and Fischbach, respectively (Fig. 5a - c).
The ensemble mean error of the simulated flood peaks was reduced by 7
%, 18 % and 20 % (mean reduction of four events per catchment) for the
three catchments compared to the OL simulations (Fig. 5e - g). To
confirm if the improvement by our approach is statistically significant,

we performed the non-parametric one-tailed paired Wilcoxon signed-
rank test (Table 3). We compared the paired ensemble mean and me-
dian of 12 events between OL and DA_RF simulations. It shows that
DA _RF has significantly improved the general performance measured by
KGE of the 12 events. The percent error of flood peaks and the uncer-
tainty of flood events of DA_RF are significantly smaller than that of OL.
This indicates the validity of our approach for enhancing flash flood
modeling.

Figs. 6, 7 and 8 compare the spatial distribution and uncertainty in
soil saturation of the three catchments at the flood peak between OL and
DA_RF. The saturation of each HRU is calculated as the ratio of the HRU-
specific simulated soil water storage divided by the HRU-specific
maximum soil water storage capacity as derived from model parame-
ters. In general, OL simulated wetter areas than DA _RF in the Korsch
catchment for the event in June of 2021 (Fig. 6). That is why the OL has a
larger overestimation of the flood peak than the DA_RF for this event in
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Fig. 4. Comparisons of flash flood event simulations using open loop (OL, without data assimilation), data assimilation using SWI (DA_SWI), and data assimilation
using RS SM based on RF regression (DA_RF). 12 events were simulated, which are listed in Table 2.

the Korsch catchment. In the Adenauer Bach catchment, both OL and
DA_RF simulate very wet conditions for the example of the event in July
2021, but DA _RF suggests some wetter areas near the stream, resulting
in a smaller underestimation of the flood peak than the OL (Fig. 7). For
the event in May 2018 of the Fischbach catchment (Fig. 8), DA_RF shows
generally more drier areas, leading to less overestimation compared to
OL. In general, OL has a much larger variance in the soil saturation
(Fig. 6d, Fig. 7d and Fig. 8d) than DA _RF (Fig. 6e, Fig. 7e and Fig. 8e). In
particular, the variance of the OL simulations is larger in wet areas. This
implicitly suggests that our new approach DA _RF can reduce the un-
certainty in the simulation of spatial soil water storage or saturation.

5. Discussion

5.1. Historical memory in RS SM is needed for updating present model
states

The relationship between the present RS SM and the present model
soil water storage (Fig. 3a, d and g) suggests that a single RS SM
observation shows only a poor relation with the soil water storage,
because RS SM represents only the top 5 cm of soil so that the deeper soil
water storage is not well represented. After considering a suitable his-
torical time series of RS SM, we can establish a very good relationship
between soil water storage and RS SM. The reason is that the antecedent
RS SM can provide information about past infiltration events and thus
soil water storage. The number of antecedent RS SM to be included in
the regression relationship is in the range of three to four months, which

seems physically plausible. However, the optimal number of antecedent
RS SM is different in the three studied catchments (Fig. 3). This is mainly
determined by the combined effects of different catchment properties,
such as soil type, soil depth and land use, as these factors can strongly
influence infiltration processes and water retention in the soil column
(Dunne et al., 1991; Thompson et al., 2010). Thus, how many ante-
cedent RS SM should be used is catchment-specific. We also see that the
regression is better for the Adenauer Bach and Fischbach catchments
than for the Korsch catchment. This could possibly be explained by the
fact that the quality of the RS SM is negatively affected by complex
topography, surface water and urban structures (El Hajj et al., 2018;
Oliva et al., 2012; Wagner et al., 1999). Adenauer Bach and Fischbach
are more natural catchments than Korsch, with much less human im-
pacts like, built-up areas. Although the regression analysis suggests that
the number of antecedent days is catchment-specific, the improvement
in the regression is small when this number is larger than 100. This
suggests that in practice if one does not want to run a series of re-
gressions with the BIC criteria, the number of 100 antecedent days can
be used for simplification.

The results indicate that RF regression works the best for the selected
study sites in this work. However, other regression options could be used
in the proposed general framework, based on the performance of
different regression models for a specific catchment. De Santis et al.
(2021) performed data assimilation of RS SM for over 700 catchments
for daily streamflow simulation. They found that on average the
improvement by data assimilation is small, especially when soil mois-
ture has reduced control on runoff generation. However they also found
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Table 3
One-tailed paired Wilcoxon signed-rank test based on all 12 simulated events.
The significance level is 0.05.

Hypotheses P-value Result
Mean KGE HO: KGEpg rr < 0.00024 KGEpa gr is significantly
Median KGE KGEoqy, 0.00024  larger than KGEqy,
H1: KGEp rr >
KGEor,
Mean percent HO: epa rF > €01 0.00024  epp g is significantly
error H1: epa grr < €01 smaller than o,
Median percent e: Percent error 0.00049
error
Mean event HO: Uncpa grr > 0.00024 Uncpa gr is significantly
uncertainty Uncoy, smaller than Uncoy,
Median event H1: Uncpa gr < 0.00024
uncertainty Uncoy,

Unc: Uncertainty

Note: The subscript DA_RF and OL represent the option with data assimilation
using RS SM based on random forest regression and simulations without data
assimilation, respectively.

that larger improvements are observed in catchments with poor OL
streamflow predictions and inaccurate precipitation estimates. In our
case, the flash flood simulation is at hourly resolution, and the precon-
dition of soil moisture has a very large effect on fast runoff generation.
Thus, when the precondition of soil moisture for an event is improved,
we see improvements in flash flood modeling. Using antecedent RS SM
based on RF resulted in improved flash flood simulations for the three
studied catchments, suggesting that considering antecedent RS SM by
our proposed approach is a feasible way to appropriately use RS SM to
enhance flash flood simulations. Our approach using RS SM to derive the
total soil water storage brings three advantages: i) antecedent RS SM
(representing upper 5 cm soil) can implicitly represent soil moisture
information of deeper soil layers considering travel time from top soil to
deep soil, thus combining a certain number of antecedent RS SM can
help reconstruct the vertical soil moisture profile given the lack of

10

vertical soil moisture profile measurements; ii) RS SM used in this
approach provides the spatial average soil moisture information of the
studied catchment, overcoming the difficulties of using point measure-
ments to derive the catchment averaged wetness condition given a large
catchment heterogeneity; and iii) The RS SM data is available in most
areas of the world such that the proposed approach may be adapted to
different regions easily without additional costs like the installation of
soil moisture sensors. Although our approach brings abovementioned
advantages, there are few limitations: i) the quality of the regression
linking RS SM to total soil water storage strongly depends on the per-
formance of the applied flash flood model in the historical period. The
model structure uncertainty and the uncertainty of the historical pre-
cipitation measurements can be propagated to the regression, which
may lead to bias and uncertainty in deriving the total soil water storage;
and ii) although using good ensemble simulations to derive the “true”
total soil water storage in the historical period can provide the valida-
tion data, it is not an independent dataset, as in-situ measurements
would be. However, under real-world conditions very dense in-situ
measurement networks are often not available. This leads to a weak
validation of our approach. Therefore, in the future testing of our
approach at a pilot site with adequate in-situ soil moisture measure-
ments can help to verify its general performance and validity.

Apart from our approach using RS SM to derive initial catchment
wetness, using antecedent precipitation might be another alternative.
The biggest advantage of using antecedent precipitation to derive
catchment wetness is that precipitation measurements are easily avail-
able at a high temporal resolution. However, catchment wetness is also
largely affected by evapotranspiration. This means that vegetation type
and soil property should be accounted for besides further meteorological
information (e.g., global radiation). This could make estimating catch-
ment wetness solely from antecedent precipitation challenging. Using
RS SM can indirectly account for the influence of evapotranspiration.
The antecedent precipitation is also used to help derive catchment
wetness prior to a flood event based on the hydrological model. Future
work on building relationships between catchment wetness, antecedent
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present the comparison between OL and DA_RF for easier visualization.

precipitation and the spatiotemporal distribution of modeled soil water
storage may provide some feasible solutions for easier derivation of
catchment wetness.

Data assimilation with RS SM can improve modeling, but looking at
the peak and extent of flood events the precipitation uncertainty still
dominates the total uncertainty. Douinot et al. (2016) showed that the
spatial variability of rainfall has a large impact on the catchment
response for flash flood forecasting. Yatheendradas et al. (2008) showed
that the uncertainty due to depth/volume bias in the radar rainfall es-
timates almost completely dominated the uncertainty of their flash flood
modeling. Therefore, efforts to improve precipitation estimation in both
space and time are important and needed to further enhance flash flood
simulations. In addition, decomposing the contributions of different
factors, e.g., model forcings like precipitation, model parameters and
initial conditions, to flash flood simulations would help to identify the
relative importance of different factors. For example, using a variance-
based approach Thomas Steven Savage et al (2016) could rank the
influencing factors for the flood propagation in rivers. Therefore, this
kind of analysis can guide us to focus on reducing the uncertainties of the
dominant factors.

5.2. Transferability of the proposed framework to other RS products

Although SMAP outperforms other RS products (Chan et al., 2018; Li
et al., 2022), it has only been available since April 2015. Other RS
products may have lower quality but can provide SM for a longer period
of time, e.g. AMSR-2 since 2012, ASCAT since 2007, and SMOS since
2010. If our framework can be transferred to these RS products, it may
allow the investigation of more historical flash flood events. Compared
to SMAP, these products show differences in the spatial resolution
(Table 1), data gaps, and the techniques for deriving SM. Therefore, the
performance of the transferability should be examined before using
these RS products.
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We tested RF regression models using AMSR-2, ASCAT and SMOS for
the three study sites (Fig. 9), using the same antecedent days as for
SMAP. It can be seen that the three RS products all perform better in the
Adenauer Bach and Fischbach catchments than in the Korsch catchment,
confirming that catchment properties can influence the regression. In
general, SMOS performs best among the three RS products, followed by
ASCAT and AMSR-2. Looking more closely at the regressions, AMSR-2
shows a larger spread than other products, especially in the Korsch
and Fischbach catchments, indicating that it might not be suitable for
transferring our framework. The R? of SMOS reaches 0.88 and 0.90 for
the Adenauer Bach and Fischbach catchments, respectively, and the
spread is small, suggesting that the framework can be transferred to
SMOS. For ASCAT, the R? is slightly lower and the spread is slightly
larger than for SMOS, but it still shows the possibility of transferring the
framework. Nevertheless, the uncertainty and performance should be
verified for specific study areas before transferring the framework to
different RS products.

6. Conclusions

In this study, we developed a new approach using present and past
remotely sensed soil moisture (RS SM) and regression models to better
characterize antecedent soil water storage in flash flood simulations.
Our approach solves the problem that RS SM cannot be directly assim-
ilated into flash flood models because RS SM only contains soil moisture
information for the top 5 cm of soil, while the flash flood model we used
(LARSIM) represents the entire soil water storage with a single soil layer.
RS SM from SMAP was used to build the relationship between RS SM and
model soil water storage based on four regression models. In order to
enhance flash flood modeling, the LARSIM model, which is used by
several German federal states for hydrological forecasting, was coupled
to PDAF, a data assimilation framework, to assimilate RS SM. This new
approach was tested for the urbanized Korsch catchment and the
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Fig. 9. Performance of regressions using RF with 120, 105 and 105 antecedent days of RS SM for the Korsch, Adenauer Bach and Fischbach catchments, respectively.
Three RS SM products were used, i.e. AMSR-2 (a, d and g), ASCAT (b, e and h) and SMOS (c, f and i).

mountainous Adenauer Bach and Fischbach catchments in Germany,
representing two different types of catchments prone to flash floods.
Considering antecedent RS SM can result in good relationships between
RS SM and model soil water storage for the three studied catchments
since antecedent RS SM can to some extent provide SM information of
present deeper soil layers. Assimilating the inferred soil water storage in
the coupled LARSIM-PDAF model can enhance flood modeling in terms
of the general performance (increase of ~ 0.22 in KGE), flood peak er-
rors (reduction of ~ 15 % in the mean error), and uncertainty reduction
in soil wetness simulations. The approach can be transferred to other RS
products, such as ASCAT and SMOS. Although proper assimilation of RS
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SM can improve flash flood simulations, it is observed that uncertainty
in precipitation has a very large impact on simulating flash floods.
Therefore, reducing, or better quantifying precipitation uncertainty will
always be important for flash flood modeling in the future. Due to the
availability of SMAP SM since 2015, we tested our new approach for four
events per catchment. Future work should find more catchments
affected by flash floods and more events to better verify the performance
of the proposed approach. Nevertheless, the proposed approach
considering the antecedent RS SM in the coupled flash flood and data
assimilation model provides a feasible way to appropriately use RS SM
for data assimilation for hydrological models with few or even a single
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soil layer.
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