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A B S T R A C T

The wetness precondition of a catchment affects available soil water storage capacity and infiltration rate, thus 
influences flash flood generation. Remotely sensed (RS) soil moisture (SM) can provide valuable information on 
catchment wetness, but typically only represents the top 5 cm of the land surface. However, hydrological models 
for flash flood simulation need to consider deeper layers to calculate the total soil water storage. Therefore, a key 
challenge is to link RS SM to total soil water storage and assimilate RS SM into flash flood models to correctly 
describe initial catchment wetness. In this study, we developed an approach to combine present and antecedent 
RS SM to infer present soil water storage based on four regression models. The inferred soil water storage from 
SMAP (soil moisture active passive) SM was assimilated into the operational LARSIM (Large Area Runoff 
Simulation Model) hydrological model. We tested this new approach with 12 events in the headwater catchments 
Körsch, Adenauer Bach and Fischbach in Germany. Results show that random forest regression performs the best 
among the four regression models. The BIC (Bayesian Information Criterion) score suggests that regressions 
considering antecedent RS SM can well infer soil water storage, resulting in R2 of 0.85, 0.94 and 0.93 for the 
Körsch, Adenauer Bach and Fischbach catchments, respectively. Compared to the open loop (without data 
assimilation) simulations, our approach enhanced the general performance of event simulations with average 
KGE increases of 0.09, 0.24 and 0.33 for the Körsch, Adenauer Bach and Fischbach, respectively; and the mean 
error in the 12 simulated event peaks is reduced 15 %. Moreover, the simulation uncertainty is reduced, too. The 
transferability of the proposed approach to other RS products is also discussed. Although assimilating RS SM can 
enhance flash flood modeling, it is primarily affected by the uncertainty in precipitation. In the future, the 
proposed approach should be tested with more catchments and events to verify its general validity.

1. Introduction

Studies have shown that the frequency of short-duration extreme 
rainfall events is increasing on a global scale in response to climate 
change (Fowler et al., 2021; Guerreiro et al., 2018; Westra et al., 2014). 
This type of extreme rainfall can induce flash flood events. The term 
“flash flood” is typically defined as a fast-responding extreme flow of 
water into normally dry areas triggered by intense rainfall within few 
hours (Flamig et al., 2020; Saharia et al., 2017). Such events often occur 
in small catchments with an area of a few hundred square kilometers or 
less (Zhai et al., 2021). Due to their rapid onset, there is a very limited 
opportunity and time for an effective response (Hapuarachchi et al., 

2011). As a result, flash floods can cause severe damages to infrastruc
ture and the environment, as well as endanger human lives and live
stock. They are among the world’s deadliest climate-related natural 
hazards (Ma et al., 2021; Zhai et al., 2021). It is therefore of great 
importance to improve flash flood forecasts and reducing associated 
uncertainties by any means.

As with other hydrological modeling, forecasts and simulations of 
flash floods are affected by a number of uncertainties. These un
certainties encompass model structure uncertainty (Beven, 1993; Butts 
et al., 2004; Chang et al., 2023), model parameter uncertainty (Kavetski 
et al., 2006a; Liu et al., 2022; Schoups and Vrugt, 2010), and errors in 
meteorological forcing and observations (Bárdossy et al., 2022; Kavetski 
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et al., 2006b; Pianosi and Wagener, 2016; Schalla et al., 2023), e.g., 
streamflow and soil moisture. In addition to these uncertainties, the 
initial condition, particularly soil wetness, can significantly impact the 
generation of floods, including the magnitude and volume of floods, due 
to the influence of the available soil water storage (Mahdi El Khalki 
et al., 2020; Nikolopoulos et al., 2011; Tramblay et al., 2012). The 
implementation of continuous measurements of soil moisture (SM) can 
facilitate a more accurate quantification of the wetness condition of an 
area. Consequently, there is potential for improvement in flash flood 
simulations with SM measurements to determine the initial model 
conditions prior to the event (Cenci et al., 2017; Crow et al., 2017; 
Nikolopoulos et al., 2011). In-situ SM measurements can provide accu
rate SM along the vertical soil profile, however, it is challenging to 
obtain data across a larger spatial area. With the development of 
advanced remote-sensing techniques, more remotely sensed soil mois
ture (RS SM) products are being produced. For example, the Soil mois
ture Ocean Salinity (SMOS) (Kerr et al., 2012), Soil Moisture Active 
Passive (SMAP) (Entekhabi et al., 2010), Advanced Scattermeter 
(ASCAT) (Bartalis et al., 2007), and Advanced Microwave Scanning 
Radiometer-2 (AMSR-2) (Parinussa et al., 2015) have been launched to 
provide global-scale SM products. In comparison to other RS products, 
SMAP has demonstrated superior performance in estimating SM (Chan 
et al., 2018; Li et al., 2022). Recent research suggested that the inte
gration of RS technologies has the potential to transform soil measure
ment practices, offering comprehensive, scalable, and cost-effective 
solutions (Abdulraheem et al., 2023). While they can represent spatial 
averaged SM at various available spatial resolutions, the disadvantage is 
that they normally indicate SM of the topsoil layer (top 5 cm) only. It is 
therefore, crucial to establish the optimal methodology for utilizing RS 
SM in hydrological simulations, with a view to enhancing flash flood 
simulations.

Assimilation of RS SM measurements has been widely used to 
improve the performance of land surface models (De Lannoy and 
Reichle, 2016; Lievens et al., 2016; Naz et al., 2019). Lievens et al. 
(2016) demonstrated that the assimilation of RS SM at the catchment 
scale resulted in enhanced predictive skills. Naz et al. (2019) showed an 
improvement of SM and runoff simulations at a spatial resolution of 3 
km across Europe through assimilating RS SM. For assimilating RS SM 
observations into land surface models (LSMs), RS SM can be directly 
linked to simulated SM by LSMs, as LSMs possess multiple vertical soil 
layers that can correspond to SM measurements at varying depths. In 
contrast to LSMs, hydrological models are less spatially distributed, 
comprising sub-catchments, multiple hydrological response units 
(HRUs), or even a single bucket for the entire catchment. Nevertheless, 
studies have demonstrated the utility of RS SM observations in 
enhancing hydrological simulations (Crow and Ryu, 2009; Han et al., 
2012; Houser et al., 1998; López López et al., 2016; Pauwels et al., 2001; 
Pauwels et al, 2020). The major aim of these studies is to improve 
streamflow simulations at the daily scale. The models applied are less 
complex in terms of soil representations than the abovementioned land 
surface models, but still comprise a few soil layers, allowing for direct 
linkage of RS SM to the top soil layer of a model.

However, there are hydrological models that are widely used or in 
operation that only consider a single soil layer. Examples of such models 
include the HBV model (Lindström et al., 1997), Hymod (Wagener et al., 
2001), varKarst (Hartmann et al., 2013) and LARSIM (Large Area Runoff 
Simulation Model, Bremicker, 2000; LEG, 2023). Note that LARSIM will 
be used in our study as the flash flood model as it is used for operational 
streamflow and flood predictions in multiple states within Germany. 
One limitation of this type of models is the inability to link the RS SM of 
the top soil layer to the entire model soil water storage. The pre
processing of RS SM is a requisite step for data assimilation in models 
that contain a single soil layer. Few studies have investigated the 
appropriate usage of RS SM in models with a single soil layer. De Santis 
et al. (2021) rescaled RS SM to enable their assimilation into hydro
logical simulations for over 700 catchments in Europe. Laiolo et al. 

(2016) employed an alternative rescaling approach to calculate the Soil 
Water Index (SWI), thereby establishing a link between RS SM and 
model storage. Nevertheless, how to optimally use RS SM in flash flood 
simulations is rarely reported, particularly with regard to the hourly 
temporal resolution. Studies on flash floods currently focus on ensemble 
simulations to quantify uncertainty (Flamig et al., 2020; Quintero et al., 
2012), risk assessment and susceptibility mapping (Arabameri et al., 
2020; Ma et al., 2021) and early warning system development (Corral 
et al., 2019; Zhao et al., 2022). Further investigation is required to 
improve flash flood predictions using assimilation of RS SM. The core 
research question is then how information of RS SM time-series can be 
optimally exploited and linked to model soil water storage in order to 
improve flash flood model predictions.

In this study, we propose to use present and historical memory of RS 
SM to infer the present total soil water storage. The historical memory of 
RS SM is represented by a certain number of antecedent RS SM. These 
antecedent RS SM (historical memory) in the top soil can travel to 
deeper soil layers later in time, thus a series of past antecedent RS SM 
can provide information on the current vertical SM distribution to derive 
the present total soil water storage. The SMAP SM retrievals were 
selected as the target RS measurements due to the superior spatial res
olution, quality, and accuracy of SMAP in comparison to other RS 
products. To improve flash flood simulations, we assimilate the inferred 
soil water storage into the LARSIM model coupled to PDAF (parallel data 
assimilation framework). We test our approach in three different 
catchments with four events per catchment (12 events in total). Four 
regression methods with varying degrees of complexities are assessed to 
establish a relationship between RS SM and model soil water storage. 
Furthermore, we demonstrate the transferability of our approach to 
other RS products. Our work will provide a feasible method to use RS SM 
measurements of the top soil layer in hydrological models that contain 
only a single soil layer, with the aim of enhancing flash flood and 
streamflow forecast.

2. Study sites and data

We set the following criteria to select our study sites: 1) hourly 
forcing and streamflow observations must be available; 2) flash flood 
events must have occurred in the past 10 years; 3) catchments should be 
of a relatively small size, considering flash flood occurrence character
istics; and 4) LARSIM model configurations must be available. Finally, 
three catchments were selected as our test sites: Adenauer Bach, Fisch
bach and Körsch (Fig. 1). The three catchments were selected to repre
sent two distinct types of systems susceptible to flash floods. Adenauer 
Bach and Fischbach represent mountainous rural catchments, while 
Körsch represents an urbanized catchment comprising a considerable 
proportion of impervious surface areas susceptible to surface runoff 
generation. Moreover, these three sites allow the testing of our approach 
in two distinct settings of the LARSIM model, corresponding to different 
federal states of Germany. All three catchments are composed of basic 
hydrological response units (HRUs). Each HRU has its own parameters 
based on soil and land cover information. A group of HRUs constitute 
irregular sub-catchments for the Adenauer Bach and Fischbach catch
ments and 1 km × 1 km regular grids for the Körsch catchment.

The Adenauer Bach catchment is located in the federal state of 
Rhineland-Palatinate, Germany (Fig. 1). The area of the catchment is 57 
km2, with the Adenauer Bach river flowing into the Ahr river and finally 
ending in the river Rhine. The mean streamflow at the Niederadenau 
gauging station is 0.31 m3/s. The mean annual precipitation (year 
2007–2021) is 662 mm/yr, with summer precipitation (June to August) 
accounting for 34 % of the total annual precipitation at the Nürburg- 
Barweiler meteorological station. The mean annual temperature is 
9.0 ◦C. The catchment is predominantly covered by forest, accounting 
for 72 % of the total area. Two rainfall stations close to the catchment 
are available for the collection of precipitation forcings (Table 1). The 
streamflow gauge was installed in 2014, and hourly measurements have 
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Fig. 1. Three study sites: Adenauer Bach, Fischbach and Körsch catchments, where Adenauer Bach and Fischbach represent small mountainous catchments while 
Körsch represents a more urbanized catchment. The figure shows the location, rainfall stations, streamflow gauging stations and the distribution of land use types of 
the three catchments.

Table 1 
Description of forcing datasets, RS SM and streamflow observations.

Category Data Temporal 
resolution

Station IDs of Körsch Station IDs of 
Adenauer Bach

Station IDs of 
Fischbach

Source

Streamflow Time-series streamflow Hourly Denkendorf Körsch 
(4414)

Niederadenau 
(2718085500)

Gerach2 
(2541075000)

https://udo.lubw.baden-wuerttemberg. 
de/public/pages/home/index.xhtml
https://www.hochwasser.rlp.de/

Forcing1 Precipitation Hourly 00279, 03278, 
04160, 04928, 
04931, 06275

03660, 04219 0038, 0053, 
0360

Deutscher Wetterdienst (DWD) https 
://opendata.dwd.de/climate_environment 
/CDC/observations_germany/climate/h 
ourly/Air temperature 04160, 04928, 

04931, 06275
03490, 03660 0053, 0360

Air pressure 04928, 04931 03660 2385
Global radiation 04928 05100 0053, 0360
Relative humidity 04160, 04928, 

04931, 06275
03490, 03660 0053, 0360

Wind speed 04928, 04931 03660 0053, 0360
Soil 

moisture
SMAP (SPL2SMP_E) Daily 9 km x 9 km https://nsidc.org/data/spl2smp_e/vers 

ions/5
AMSR-2 
(LPRM_AMSR2_DS_A_SOILM3)

10 km x 10 km https://hydro1.gesdisc.eosdis.nasa.gov/d 
ata/WAOB/LPRM_AMSR2_DS_A_SO 
ILM3.001/

ASCAT (ASCAT SSM CDR v7 
12.5 km)

12.5 km x 12.5 km https://navigator.eumetsat.in/prod 
uct/EO:EUM:DAT:0307

SMOS (BEC-SMOS-PD-SM-L3v4) 25 km x 25 km https://bec.icm.csic.es/new-release-of- 
bec-smos-soil-moisture-products/

1 Meteorological Station IDs: 00279 = Baltmannsweiler-Hohengehren; 03278 = Metzingen; 04160 = Renningen-Ihinger Hof; 04928 = Stuttgart (Schnarrenberg); 
04931 = Stuttgart-Echterdingen; 06275 = Notzingen; 03660 = Nürburg-Barweiler; 03490 = Neuenahr, Bad-Ahrweiler; 04219 = Rodder; 05100 = Trier-Petrisberg; 
0038 = Bruchweiler; 0053 = Fischbach; 0360 = Leisel; 2385 = Idar-Oberstein.
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been recorded since that time. The Fischbach catchment is also located 
in the federal state of Rhineland-Palatinate, Germany (Fig. 1). It has an 
area of 63 km2, with the river Fischbach flowing into the river Nahe and 
also ending in the river Rhine. The mean streamflow at the Gerach 2 
gauging station is 0.62 m3/s. The mean annual precipitation (year 
2014–2022) is 665 mm/yr and summer precipitation (June to August) 
accounts for 27 % of the total annual precipitation at the Fischbach 
meteorological station. The mean annual temperature is 9.9 ◦C. Forest 
covers Fischbach catchment for about 48 % of the total area. Three 
rainfall stations situated close to the catchment are available to collect 
precipitation forcing data (Table 1). The Körsch catchment is close to the 
city of Stuttgart, located in the federal state of Baden-Württemberg, 
Germany (Fig. 1). Compared to Adenauer Bach and Fischbach, it has a 
large proportion of built-up areas, ca 34 %, followed by agricultural land 
accounting for 30 %. The total area of the Körsch catchment is 123 km2, 
with a mean streamflow of 1.31 m3/s. The Körsch river flows into the 
Neckar river which also ends up in the river Rhine. The mean temper
ature is around 10.5 ◦C, while the annual mean precipitation (year 
2007–2021) is 657 mm/yr with the summer precipitation (June to 
August) accounting for 38 % of the total precipitation at the Stuttgart- 
Echterdingen meteorological station. The Körsch catchment has six 
available precipitation stations including one within the catchment 
(Table 1). Hourly streamflow has been measured since 1980. Finally, the 
LARSIM model was configured. The Adenauer Bach and Fischbach 
catchments were simulated with 49 and 35 irregular sub-catchments 
(comprising 1985 HRUs and 1825 HRUs), respectively. In contrast, the 
Körsch catchment was modeled with 123 regular rectangular grid cells 
(comprising 2434 HRUs).

The hourly meteorological forcing data (Table 1), including precip
itation, air temperature, air pressure, global radiation, relative humidity 
and wind speed, drive the flash flood simulations. They were specifically 
used to calculate effective precipitation and potential evapotranspira
tion for the studied catchments. The LARSIM model for the three test 
sites has been calibrated by the corresponding state agencies according 
to the guidelines given by Haag et al. (2020). Hourly streamflow 

observations were used to compare with event simulations with or 
without data assimilation. The SMAP SM retrievals were obtained for 
the sake of data assimilation. Table 1 provides additional details 
regarding the data.

3. Methods

The true SM at different soil depths can be affected by many factors, 
e.g., vegetation types and soil characteristics, but is largely influenced 
by past infiltration events. Soil moisture content is not homogeneous in 
the vertical direction. However, the LARSIM model, which is used for 
flash flood simulations, only contains a single soil layer representing the 
total soil water storage. The RS SM only represents the upper 5 cm of 
soil, but the antecedent RS SM may provide insights into past infiltration 
processes in deeper soil layers. Based on this idea, we built the rela
tionship between the current model soil water storage and RS SM 
considering current and antecedent measurements. The optimal rela
tionship was obtained through the application of several regression 
models, including linear, polynomial, random forest (RF), and long 
short-term memory (LSTM) models (Fig. 2). Through that, we inferred 
current total soil water storage and assimilated it into the coupled 
LARSIM-PDAF model to improve flash flood simulations. The key 
components of the framework are illustrated in Fig. 2.

3.1. Flash flood model

In this study, we used LARSIM (Large Area Runoff Simulation Model, 
Bremicker, 2000; LEG, 2023) to simulate flash floods. The reason is that 
it has been applied in several federal states in Germany and a few other 
countries for operational purpose, including flood forecasts and hydro
logical predictions (Bremicker et al, 2013). Therefore, improvements as 
documented in this work can be incorporated to enhance the operational 
performance. LARSIM uses irregular sub-catchments or regular (1 km ×
1 km) grids to model the study area of interest. Furthermore, small 
hydrological response units (HRUs) are used within a sub-catchment or 

Fig. 2. Schematic of the framework for assimilating RS SM into flash flood simulations. It describes the concept of using current and multiple antecedent RS SM to 
infer the current total soil water storage and assimilating the total soil water storage in flash flood models.
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grid cell, allowing for the consideration of high-resolution spatial in
formation. In this study, LARSIM was executed at an hourly time step for 
event-based simulations.

LARSIM describes the water balance of a catchment by considering 
various hydrological processes, including interception, snow accumu
lation and melting, evapotranspiration, infiltration, soil water storage, 
runoff generation and channel routing. Since the focus of our study is 
simulating flash floods, which typically occur in summer months, we 
focus here on soil water storage and different runoff generation pro
cesses. For flash flood simulations, we used a configuration of soil water 
storage with four runoff components. Furthermore, the dynamic infil
tration module, originally developed by Steinbrich et al. (2016) was 
employed. It accounts for matrix infiltration as well as infiltration via 
macropores and shrinkage cracks on a physical basis (Haag et al., 2022). 
Soil water storage is calculated with the water balance equation Eq. (1). 
The soil-moisture – saturated-areas function Eq. (2) is used to calculate 
the average saturation of the catchment’s area. 

W0(t+1) = W0(t)+P(t) − Ea(t) − QSD2(t) − QSD(t) − QSI(t) − QSB(t)
(1) 

s
S
= 1 −

(

1 −
W0

Wm

)b

(2) 

where W0(t) [mm] denotes the amount of water in the soil storage at the 
time t; P(t) [mm] is water from precipitation and snow melt; Ea(t) [mm] 
is the current evapotranspiration; and the four runoff components are 
QSD2(t) [mm], QSD(t) [mm], QSI(t) [mm] and QSB(t) [mm], represent
ing fast direct runoff, slow direct runoff, interflow and baseflow, 
respectively. s

S [%] is the portion of saturated areas in the catchment 
area. Wm [mm] denotes the maximum soil water storage, and b [-] is a 
shaping factor.

To calculate the Horton overland flow represented by the fast direct 
runoff QSD2, infiltration is simulated on a physical basis, using soil 
physical parameters and initial soil moisture, and accounting for matrix 
infiltration as well as infiltration through macropores and shrinkage 
cracks (Haag et al., 2022): 

Itot = Imatrix + Imp + Isc (3) 

QSD2 =

{
0,P ≤ ItotΔt

P − ItotΔt,P > ItotΔt (4) 

Where Itot [mm/h], Imatrix [mm/h], Imp [mm/h] and Isc [mm/h] represent 
total infiltration, matrix infiltration, macropore infiltration and infil
tration from shrinkage cracks, respectively. Δt = 1 h, representing the 
computational time interval. The other three runoff components are 
simulated using process-oriented conceptual approaches. Slow direct 
runoff (QSD) is calculated by an explicit soil moisture accounting func
tion (Beven, 2012), where QSD increases with increasing soil water 
storage. Lateral drainage toward interflow (QSI) and vertical percolation 
toward base flow (QSB) are generally close to zero for soil water storage 
below field capacity. Both flows increase exponentially, when field ca
pacity is exceeded and coarser pores are filled with water. The algo
rithms used for the two different models are described in detail in 
chapters 3.6.3 and 3.6.7 for Körsch and in chapter 3.6.9 for Adenauer 
Bach and Fischbach by LEG (2023).

To setup a LARSIM model, physical parameters are derived from 
digital elevation models and digital maps of soil properties, land cover, 
and river networks (Bremicker et al., 2013; Haag et al. 2022). There are 
also conceptual, catchment-specific parameters that are calibrated based 
on historical observations. Thus, in our study we directly use the cali
brated parameters. However, to cover parameter uncertainties for 
ensemble generations, we consider uncertainties of catchment-specific 
parameters that are relevant for flash flood simulations. These param
eters are described in Tables S1-S3 in the supplement. In our study, 
LARSIM runs at an hourly resolution, driven by the hourly forcings 

described in Table 1, and generates hourly runoff output and soil water 
storage, which are then used to couple LARSIM with data assimilation.

3.2. Regression between RS SM and model soil water storage

3.2.1. Four regression models
To cover a wide range of conditions for building the relationship 

between model soil water storage and RS SM, we used four different 
regression models: a widely used linear regression model, a polynomial 
regression model and machine learning methods including random 
forest regression and long short-term memory (LSTM). Eq. (5) describes 
the general form of the regression models. The total soil water storage at 
t = i (Si[mm]) can be obtained from a function with input variables 

(
θi,

θi− 1,⋯, θi− p
)

and a residual εi [mm], where θi [m3/m3], θi− 1 [m3/m3] 
and θi− p [m3/m3] denote the RS SM at the present day t = i, one day 
before i (t = i-1) and p days before i (t = i-p). 

Si = f
(
θi, θi− 1,⋯, θi− p

)
+ εi (5) 

Linear and polynomial regressions are described by Eq. (6) and (7). Note 
that for the polynomial regression, we tested second (k = 2) and third (k 
= 3) order regressions only to avoid overfitting. 

Si = β0 + β1θi + β2θi− 1 +⋯+ βp+1θi− p + εi (6) 

Si = β0 + β1θk
i + β2θk

i− 1 +⋯+ βp+1θk
i− p + εi (7) 

where β0 [-], β1 [-], β2 [-], …,βp+1 [-] are the regression constants.
Random forest is a powerful ensemble-based learning algorithm that 

provides classification and regression (Breiman, 2001) and has been 
widely used in hydrological studies (Desai and Ouarda, 2021; Liu et al., 
2020; Zhang et al., 2018). In this study, we use the regression option to 
establish the relationship between RS SM and model soil water storage. 
It builds an ensemble of decision trees trained with the bagging method 
to make more accurate predictions. The random forest regression is set 
up in Python using the “RandomForestRegressor” method within the 
“sklearn.ensemble” package (Pedregosa et al., 2011) using the default 
value of 100 for the number of trees in the forest.

LSTM is a special type of recurrent neural network (RNN) that can 
provide a short-term memory for a very long timestep (Hochreiter and 
Schmidhuber, 1997). It can learn long-term dependencies between input 
and output variables (Kratzert et al., 2018). Therefore, it could be good 
for our regression purposes. In this study, three layers in the LSTM were 
used and the unit number, the dropout rate within these layers, and the 
learning rate were hyperparameters for tuning. The implementation of 
the LSTM and the automatic parameter calibration are based on the 
open-source deep learning library “Keras” (Chollet, 2015).

3.2.2. Preprocessing of SMAP SM and model soil water storage
Our aim is to improve flash flood modeling for small catchments 

(~100 km2). However, SMAP SM has a spatial resolution of 9 km × 9 
km, which cannot cover detailed SM for small HRUs (~few hectares) or 
model grids (~1 km2). Due to the problem of the coarse spatial resolu
tion of SMAP SM, the direct comparison of SMAP SM (or regressed SM) 
to in-situ SM observation is inappropriate given the large spatial het
erogeneity. However, we can derive catchment averaged SM based on 
SMAP and derive “true” catchment averaged soil water storage based on 
LARSIM simulations considering precipitation uncertainty. The regres
sion is then built between the catchment averaged SMAP soil moisture 
and catchment averaged model soil water storage.

We use daytime SM retrievals of SMAP, which are from the ascending 
overpasses. It has missing values, about one in three days. To have 
continuous data for the regression, linear interpolation is used to fill in 
these missing values.

A good estimate of soil water storage is crucial for the regression. 
Uncertainty in precipitation largely affects model simulations of soil 
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water storage. Therefore, an ensemble of 1000 members was generated 
to account for precipitation uncertainty. The log-normal multiplicative 
error model has been broadly used for precipitation perturbation (Crow 
et al., 2011; Li et al., 2015) and here it was applied to perturb precipi
tation for all ensemble members. In this study, the mean and standard 
deviation of the log-normal distribution were set to 1 and 0.25, 
respectively. Spatial correlations between different meteorological sta
tions are considered, but temporal correlations are not considered in this 
study. With one ensemble member using the original precipitation, there 
is a total of 1001 ensemble members. The best 32 performing ensemble 
members are selected according to the Kling-Gupta efficiency (KGE) for 
streamflow. Note that these 32 ensemble members are all better than the 
simulation using original precipitation in terms of streamflow simula
tions for all catchments. The number of 32 ensemble members is selected 
to be the same as the number of the ensemble size for later data 
assimilation. Finally, the mean soil water storage (pseudo observations) 
of the top 32 simulations is used to build the regression. The model 
simulation with 32 well-performed ensemble members incorporates 
precipitation uncertainty both in space and time to a large extent. 
Therefore, the derived mean soil water storage from these 32 ensemble 
members can closely represent the “true” catchment averaged soil water 
storage despite uncertainties arising from unperfect model structure. 
Given unavailable spatially distributed in-situ SM measurements, the 
ensemble soil water storage simulations form the semi-independently 
indirect measurements (the pseudo observations) to validate our 
regression approach. Despite this limitation, if our regression can match 
well the pseudo observations, it could capture well the catchment 
average response.

3.2.3. Regression selection
We set up regression models for cases using RS SM considering t = i, 

from t = i-5 to t = i, from t = i-10 to t = i, …, and from t = i-180 to t = i. 
The Bayesian Information Criterion (BIC) is used to determine the 
optimal number of antecedent days of observations to include in the 
regression (Laio et al., 2009). As the number of antecedent observations 
included in the regression increases, the BIC initially decreases, but with 
continuous increasing of antecedent observations, the BIC begins to 
increase. The lowest point of the BIC indicates the optimal balance be
tween model fit and complexity. This indicates the optimal number of 
antecedent days when building the regression. The BIC is calculated by 
Eq. (8). 

BIC = − 2ln(L)+ k × ln(n) (8) 

where L represents the maximized likelihood of the model, which 
measures how well the model fits the data. k is the number of inde
pendent variables. n is the sample size. In practice, − 2ln(L) is repre

sented as − 2ln(L) = n × ln
(

SSE
n

)

with SSE the sum of squared errors.

The coefficient of determination R2 is also used to measure the 
goodness of fit of the regression models. Among the four regression 
models, the one with the highest R2 is used to infer soil water storage 
from SMAP SM. 

R2 = 1 −

∑N
i=1

(
xi

o − xi
m
)2
)

∑N
i=1

(
xi

o − xo
)2 (9) 

where xi
o and xi

m are the i-th value of observations and model simula
tions, respectively. xo is the mean of observations. N denotes the total 
number of observations.

3.3. Data assimilation

PDAF (parallel data assimilation framework) was selected as the data 
assimilation tool because it provides many DA methods and supports 
other useful options such as localization for future development (Nerger 

et al., 2005). It also provides a complete and powerful package for 
coupling with LARSIM. We used the Ensemble Kalman Filter (EnKF) to 
perform sequential data assimilation.

3.3.1. Ensemble Kalman filter (EnKF)
The EnKF (Evensen, 1994) can be described as follows: 

Xf =
(

Xf
1,X

f
2,⋯,Xf

nens

)
(10) 

Xf
=

1
nens

∑nens

i=1
Xf

i (11) 

where Xf
i contains the prior model states (before assimilation) for the i- 

th ensemble member. In this study, Xf
i contains the soil water storage of 

the LARSIM model. Xf is the ensemble mean and nens denotes the 
ensemble size.

P = 1
nens− 1X

ʹXʹT, with Xʹ =
(

Xf
1 − Xf ,Xf

2 − Xf ,⋯,Xf
nens − Xf

)
(12).

where P is the covariance matrix of the model states estimated from 
ensemble simulations prior to DA updates. The updated soil water 
storages after assimilation are given by:

Xa
i = Xf

i + K
(

yi − HXf
i

)
, with K = PHT ( HPHT + R

)− 1 (13).

where Xa
i contains the updated model states by data assimilation, yi 

is the observation sampled from the distribution with mean equal to the 
measurement (the soil water storage derived from RS SM based on a 
suitable regression model) and covariance R. K is the Kalman gain. H 
represents the observation operator. With the regression approach, we 
can derive the catchment averaged soil water storage based on RS SM. 
Using soil water index (SWI, see section 3.3.2), we can derive soil 
saturation degree and thus calculate catchment averaged soil water 
storage. The assimilation is based on HRUs to better represent the spatial 
heterogeneity. The weight of each HRU to the catchment averaged soil 
water storage is set as the areal fraction (the area of each HRU divided by 
the total catchment area).

Given the coarse resolution of RS SM, the catchment averaged soil 
water storage was assimilated. The catchment averaged soil water 
storage from RS SM was derived using our approach (this is catchment 
averaged observation), and next the observation operator is applied on 
the simulation to derive the catchment averaged soil water storage 
simulation considering the areal fraction of each HRU and the simulated 
soil water storage for each HRU. With help of the Ensemble Kalman 
Filter (EnKF), soil water storage of all the HRUs was updated. This al
lows to find differences in spatially heterogeneous soil saturation of 
HRUs for open loop runs (no assimilation of RS SM) and data assimila
tion runs.

3.3.2. Ensemble generation and data assimilation settings
Compared to directly using RS SM, the soil water index (SWI) can 

account for the antecedent soil moisture conditions (Laiolo et al., 2016). 
In addition to open loop (OL) simulations, we also compare our 
approach to data assimilation using SWI (DA_SWI). 

SWIn = SWIn− 1 +Kn
(
SDo,n − SWIn− 1

)
(14) 

Kn =
Kn− 1

Kn− 1 + e
−

(
tn − tn− 1

T

) (15) 

where SWIn is the SWI at time step tn. SDo,n represents the observed soil 
saturation degree at time tn in the range [0,1], which is calculated as the 
RS SM at time tn normalized by the maximum RS SM over the entire 
period. Kn is the gain at time tn, with K1 = 1 and SWI1 = SDo,1. The 
parameter T characterizes the temporal variation of SM within the root- 
zone profile and was set to 10 days as suggested by Laiolo et al. (2016). 
The catchment averaged SWI is calculated and later used for DA.
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After testing different ensemble sizes (16, 32, 64, 96, 128), using 32 
ensemble members performs well for data assimilation and maintains an 
efficient computation. Therefore, the ensemble size was 32 in our study. 
To generate ensemble members, uncertainty in precipitation, model 
parameters and initial model soil water storage was considered.

As already used in other studies for precipitation perturbation (Han 
et al., 2014; Strebel et al., 2022), we used the multiplicative log-normal 
distribution with the mean equal to 1 and the standard deviation equal 
to 0.25. The temporal correlation is not included but the spatial corre
lation between different meteorological stations is included in the 
perturbation.

In addition to the perturbation of the meteorological forcings, 
catchment model parameters are perturbed as well. A normal distribu
tion is adopted for each parameter with a mean equal to the prior cali
brated value and a standard deviation given in Tables S1-S3. If the 
perturbed values are outside a suggested parameter range, they are set to 
the corresponding lower or upper limits.

To characterize the uncertainty in the initial model soil water stor
age, the model is run with calibrated parameters to the time point when 
data assimilation will be conducted, which is the time with the available 
SMAP SM just before the event and the catchment averaged initial soil 
water storage Sini is calculated. A normal distribution to perturb initial 
soil water storage is adopted for the initial soil water storage with a 
mean equal to Sini and a standard deviation 20 % of the maximum soil 
water storage capacity Smax. To evaluate different degrees of uncertainty 
in the initial soil water storage, different perturbations with standard 
deviations of 10 %, 20 % and 30 % of Smax are tested. Among them, 
perturbations with standard deviation 20 % of Smax provide a good 
moderate spread of ensemble simulations. Finally, the perturbed initial 
soil water storage is constrained to the range of [0, Smax].

Excluding events with missing precipitation measurements since 
2015, we used the four largest events from May to October (since our 
goal is summer events and to avoid snow influence) for each catchment 
to test our approach (Table 2). The simulation with 32 ensemble 
members is run for the flood events to obtain the open loop (OL) 
simulation, which is the ensemble simulation without data assimilation. 
For the simulations with data assimilation, the data assimilation is first 
applied to update the initial soil water storage of each ensemble member 
and then the simulation of the flood event is performed.

3.4. Performance metrics and statistical test

We use the Kling-Gupta efficiency (KGE) to measure the general 
performance of model simulations (Gupta et al., 2009) and use percent 
error (ε) to denote the simulation error for flood peaks. 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(16) 

ε =

⃒
⃒
⃒
⃒
(Xm − Xo)

Xo

⃒
⃒
⃒
⃒× 100% (17) 

with α = σm
σo 

and β =
μm
μo

, where (μm, σm) and (μo, σo) are the mean and 
standard deviation of model simulations Xm and observations Xo, 
respectively.

To assess whether improvements of flash flood modeling by the 
assimilation of RS SM into the LARSIM model is statistically significant, 
the one-tailed paired Wilcoxon signed-rank test (a non-parametric test) 
was performed. Based on all 12 simulated events from the three studied 
catchments, the paired data (OL vs. DA) were prepared. Then the sta
tistical test was carried out for the general event performance KGE, 
percent error and uncertainty of the simulated events. Here the mean 
and median of 32 ensemble simulations are used. The event uncertainty 
is calculated as: (max − min of the ensemble simulations) / observation. 
The significance level is 0.05.

4. Results

4.1. Performance of regression models

Comparing pairs of observed RS SM and LARSIM soil water storage 
(Fig. 3a, d and g) in the Körsch, Adenauer Bach and Fischbach catch
ments, we can see that a specific RS SM can correspond to a wide range 
of LARSIM modeled soil water storage. This suggests a non-linear and 
strongly scattered relationship between RS SM and LARSIM soil water 
storage, indicating that it is not appropriate to use only a single RS SM at 
a specific date to infer the soil water storage at the same date. Fig. 3b, e 
and h show the performance of the random forest regression for the 
three study catchments. As more antecedent RS SM information is 
included in the regression, R2 increases rapidly, but the increase slows 
down later as RS SM information is further increased, and finally ap
proaches a stable value. The BIC values suggest that the optimal number 
of antecedent days of RS SM for the regression is 120, 105 and 105 for 
the Körsch, Adenauer Bach and Fischbach catchments, respectively. This 
is also confirmed by the very limited increase in R2 when using more 
antecedent days, indicating that using more information than suggested 
by the BIC does not significantly improve the relationship between RS 
SM and soil water storage. Fig. 3c, f and i show that after including 120, 
105 and 105 antecedent days of RS SM, very good regressions are built 
for all the catchments. The R2 values are 0.85, 0.94 and 0.93 for the 
Körsch, Adenauer Bach and Fischbach catchments, respectively. We also 
see that when the number of antecedent days exceeds 100, the increase 
in the regression performance is very small for the three catchments. 
Therefore, if the BIC analysis is not desired, the number of 100 ante
cedent days can be used for the regression. Our analysis shows that by 
considering an appropriate historical memory in RS SM, we can well 
infer the total soil water storage for the LARSIM model even though RS 
SM represents only the top 5 cm of soil.

4.2. Improvement in flash flood simulations

As the OL and DA simulations use the same model structure and 
parameter perturbation, the influence of assimilating RS SM to improve 
the initial soil moisture condition can be verified. Fig. 4 shows that 
assimilating RS SM based on SWI does not result in a simulated ensemble 
mean discharge consistently closer to the observations (compared to OL 
simulation) for the three studied catchments. The simulated ensemble 
mean by data assimilation using SWI is improved only for three out of 12 
events, while the other events show a deteriorated performance 
compared to OL simulation. Our new approach DA_RF, using antecedent 
RS SM based on RF results in simulated discharge being closer to 
observed discharge for 10 out of 12 events, while the other two events 
show very similar simulated ensemble mean discharge compared to OL 
simulation. Uncertainty is reduced as measured by the range of flood 
peak simulations. In particular, it is greatly reduced for the Adenauer 
Bach and Fischbach catchments (Fig. 4e – l). However, even with the 
improvement by RS SM assimilation, we still have overestimation and 

Table 2 
Simulated events in the Körsch, Adenauer Bach and Fischbach catchments.

Catchment Date Peak discharge [m3/s]

Körsch 2021–6-28 57.44
2018–6-7 34.24
2016–5-30 28.28
2019–8-7 25.07

Adenauer Bach 2021–7-14 46.86
2016–6-2 21.99
2015–9-1 6.46
2019–10-20 2.33

Fischbach 2018–5-27 59.23
2018–6-1 13.14
2016–5-30 6.68
2021–6-24 5.51
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underestimation of discharge for some events in the three studied 
catchments. This indicates that there may be a very large uncertainty in 
the magnitude and the spatial pattern of precipitation, which largely 
affects the peak and shape of the flash flood simulation.

Compared to the OL simulations, the DA_SWI simulations have both 
improved and deteriorated KGE performance, and this inconsistency 
indicates some risks by using DA_SWI to improve flood modeling 
(Fig. 5). However, compared to the OL simulations, the ensemble 
members with lower performance were improved by DA_RF (Fig. 5). Our 
approach DA_RF enhanced the general performance with KGE increases 
of 0.09, 0.24 and 0.33 (average increase of four events per catchment) 
for the Körsch, Adenauer Bach and Fischbach, respectively (Fig. 5a – c). 
The ensemble mean error of the simulated flood peaks was reduced by 7 
%, 18 % and 20 % (mean reduction of four events per catchment) for the 
three catchments compared to the OL simulations (Fig. 5e – g). To 
confirm if the improvement by our approach is statistically significant, 

we performed the non-parametric one-tailed paired Wilcoxon signed- 
rank test (Table 3). We compared the paired ensemble mean and me
dian of 12 events between OL and DA_RF simulations. It shows that 
DA_RF has significantly improved the general performance measured by 
KGE of the 12 events. The percent error of flood peaks and the uncer
tainty of flood events of DA_RF are significantly smaller than that of OL. 
This indicates the validity of our approach for enhancing flash flood 
modeling.

Figs. 6, 7 and 8 compare the spatial distribution and uncertainty in 
soil saturation of the three catchments at the flood peak between OL and 
DA_RF. The saturation of each HRU is calculated as the ratio of the HRU- 
specific simulated soil water storage divided by the HRU-specific 
maximum soil water storage capacity as derived from model parame
ters. In general, OL simulated wetter areas than DA_RF in the Körsch 
catchment for the event in June of 2021 (Fig. 6). That is why the OL has a 
larger overestimation of the flood peak than the DA_RF for this event in 

Fig. 3. Relationship between observed RS SM and LARSIM soil water storage (a, d and g), the change in BIC and R2 (coefficient of determination) with the change in 
the number of antecedent days considered in the regression model (b, e and h), and the fit of LARSIM soil water storage and regressed soil water storage by RF using 
RS SM for the case considering 120, 105 and 105 antecedent days (denoted in c, f and i) for the Körsch, Adenauer Bach and Fischbach catchments, respectively. The 
model soil water storage in this figure is the mean of the 32 best performing ensemble members (see sect. 3.2.2). RF regression outperforms linear regression, 
polynomial regression and LSTM (see Fig. S1), so only the RF regression is presented here.
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the Körsch catchment. In the Adenauer Bach catchment, both OL and 
DA_RF simulate very wet conditions for the example of the event in July 
2021, but DA_RF suggests some wetter areas near the stream, resulting 
in a smaller underestimation of the flood peak than the OL (Fig. 7). For 
the event in May 2018 of the Fischbach catchment (Fig. 8), DA_RF shows 
generally more drier areas, leading to less overestimation compared to 
OL. In general, OL has a much larger variance in the soil saturation 
(Fig. 6d, Fig. 7d and Fig. 8d) than DA_RF (Fig. 6e, Fig. 7e and Fig. 8e). In 
particular, the variance of the OL simulations is larger in wet areas. This 
implicitly suggests that our new approach DA_RF can reduce the un
certainty in the simulation of spatial soil water storage or saturation.

5. Discussion

5.1. Historical memory in RS SM is needed for updating present model 
states

The relationship between the present RS SM and the present model 
soil water storage (Fig. 3a, d and g) suggests that a single RS SM 
observation shows only a poor relation with the soil water storage, 
because RS SM represents only the top 5 cm of soil so that the deeper soil 
water storage is not well represented. After considering a suitable his
torical time series of RS SM, we can establish a very good relationship 
between soil water storage and RS SM. The reason is that the antecedent 
RS SM can provide information about past infiltration events and thus 
soil water storage. The number of antecedent RS SM to be included in 
the regression relationship is in the range of three to four months, which 

seems physically plausible. However, the optimal number of antecedent 
RS SM is different in the three studied catchments (Fig. 3). This is mainly 
determined by the combined effects of different catchment properties, 
such as soil type, soil depth and land use, as these factors can strongly 
influence infiltration processes and water retention in the soil column 
(Dunne et al., 1991; Thompson et al., 2010). Thus, how many ante
cedent RS SM should be used is catchment-specific. We also see that the 
regression is better for the Adenauer Bach and Fischbach catchments 
than for the Körsch catchment. This could possibly be explained by the 
fact that the quality of the RS SM is negatively affected by complex 
topography, surface water and urban structures (El Hajj et al., 2018; 
Oliva et al., 2012; Wagner et al., 1999). Adenauer Bach and Fischbach 
are more natural catchments than Körsch, with much less human im
pacts like, built-up areas. Although the regression analysis suggests that 
the number of antecedent days is catchment-specific, the improvement 
in the regression is small when this number is larger than 100. This 
suggests that in practice if one does not want to run a series of re
gressions with the BIC criteria, the number of 100 antecedent days can 
be used for simplification.

The results indicate that RF regression works the best for the selected 
study sites in this work. However, other regression options could be used 
in the proposed general framework, based on the performance of 
different regression models for a specific catchment. De Santis et al. 
(2021) performed data assimilation of RS SM for over 700 catchments 
for daily streamflow simulation. They found that on average the 
improvement by data assimilation is small, especially when soil mois
ture has reduced control on runoff generation. However they also found 

Fig. 4. Comparisons of flash flood event simulations using open loop (OL, without data assimilation), data assimilation using SWI (DA_SWI), and data assimilation 
using RS SM based on RF regression (DA_RF). 12 events were simulated, which are listed in Table 2.
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that larger improvements are observed in catchments with poor OL 
streamflow predictions and inaccurate precipitation estimates. In our 
case, the flash flood simulation is at hourly resolution, and the precon
dition of soil moisture has a very large effect on fast runoff generation. 
Thus, when the precondition of soil moisture for an event is improved, 
we see improvements in flash flood modeling. Using antecedent RS SM 
based on RF resulted in improved flash flood simulations for the three 
studied catchments, suggesting that considering antecedent RS SM by 
our proposed approach is a feasible way to appropriately use RS SM to 
enhance flash flood simulations. Our approach using RS SM to derive the 
total soil water storage brings three advantages: i) antecedent RS SM 
(representing upper 5 cm soil) can implicitly represent soil moisture 
information of deeper soil layers considering travel time from top soil to 
deep soil, thus combining a certain number of antecedent RS SM can 
help reconstruct the vertical soil moisture profile given the lack of 

vertical soil moisture profile measurements; ii) RS SM used in this 
approach provides the spatial average soil moisture information of the 
studied catchment, overcoming the difficulties of using point measure
ments to derive the catchment averaged wetness condition given a large 
catchment heterogeneity; and iii) The RS SM data is available in most 
areas of the world such that the proposed approach may be adapted to 
different regions easily without additional costs like the installation of 
soil moisture sensors. Although our approach brings abovementioned 
advantages, there are few limitations: i) the quality of the regression 
linking RS SM to total soil water storage strongly depends on the per
formance of the applied flash flood model in the historical period. The 
model structure uncertainty and the uncertainty of the historical pre
cipitation measurements can be propagated to the regression, which 
may lead to bias and uncertainty in deriving the total soil water storage; 
and ii) although using good ensemble simulations to derive the “true” 
total soil water storage in the historical period can provide the valida
tion data, it is not an independent dataset, as in-situ measurements 
would be. However, under real-world conditions very dense in-situ 
measurement networks are often not available. This leads to a weak 
validation of our approach. Therefore, in the future testing of our 
approach at a pilot site with adequate in-situ soil moisture measure
ments can help to verify its general performance and validity.

Apart from our approach using RS SM to derive initial catchment 
wetness, using antecedent precipitation might be another alternative. 
The biggest advantage of using antecedent precipitation to derive 
catchment wetness is that precipitation measurements are easily avail
able at a high temporal resolution. However, catchment wetness is also 
largely affected by evapotranspiration. This means that vegetation type 
and soil property should be accounted for besides further meteorological 
information (e.g., global radiation). This could make estimating catch
ment wetness solely from antecedent precipitation challenging. Using 
RS SM can indirectly account for the influence of evapotranspiration. 
The antecedent precipitation is also used to help derive catchment 
wetness prior to a flood event based on the hydrological model. Future 
work on building relationships between catchment wetness, antecedent 

Fig. 5. General performance of flood event simulations (a-c); % error of flood peak simulation (d-f). Results are shown for the open loop (OL, without data 
assimilation), data assimilation using SWI (DA_SWI) and data assimilation using RS SM based on RF regression (DA_RF).

Table 3 
One-tailed paired Wilcoxon signed-rank test based on all 12 simulated events. 
The significance level is 0.05.

Hypotheses P-value Result

Mean KGE H0: KGEDA_RF ≤

KGEOL 

H1: KGEDA_RF >

KGEOL

0.00024 KGEDA_RF is significantly 
larger than KGEOLMedian KGE 0.00024

Mean percent 
error

H0: εDA_RF ≥ εOL 

H1: εDA_RF < εOL 

ε: Percent error

0.00024 εDA_RF is significantly 
smaller than εOL

Median percent 
error

0.00049

Mean event 
uncertainty

H0: UncDA_RF ≥

UncOL 

H1: UncDA_RF <

UncOL 

Unc: Uncertainty

0.00024 UncDA_RF is significantly 
smaller than UncOL

Median event 
uncertainty

0.00024

Note: The subscript DA_RF and OL represent the option with data assimilation 
using RS SM based on random forest regression and simulations without data 
assimilation, respectively.
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precipitation and the spatiotemporal distribution of modeled soil water 
storage may provide some feasible solutions for easier derivation of 
catchment wetness.

Data assimilation with RS SM can improve modeling, but looking at 
the peak and extent of flood events the precipitation uncertainty still 
dominates the total uncertainty. Douinot et al. (2016) showed that the 
spatial variability of rainfall has a large impact on the catchment 
response for flash flood forecasting. Yatheendradas et al. (2008) showed 
that the uncertainty due to depth/volume bias in the radar rainfall es
timates almost completely dominated the uncertainty of their flash flood 
modeling. Therefore, efforts to improve precipitation estimation in both 
space and time are important and needed to further enhance flash flood 
simulations. In addition, decomposing the contributions of different 
factors, e.g., model forcings like precipitation, model parameters and 
initial conditions, to flash flood simulations would help to identify the 
relative importance of different factors. For example, using a variance- 
based approach Thomas Steven Savage et al (2016) could rank the 
influencing factors for the flood propagation in rivers. Therefore, this 
kind of analysis can guide us to focus on reducing the uncertainties of the 
dominant factors.

5.2. Transferability of the proposed framework to other RS products

Although SMAP outperforms other RS products (Chan et al., 2018; Li 
et al., 2022), it has only been available since April 2015. Other RS 
products may have lower quality but can provide SM for a longer period 
of time, e.g. AMSR-2 since 2012, ASCAT since 2007, and SMOS since 
2010. If our framework can be transferred to these RS products, it may 
allow the investigation of more historical flash flood events. Compared 
to SMAP, these products show differences in the spatial resolution 
(Table 1), data gaps, and the techniques for deriving SM. Therefore, the 
performance of the transferability should be examined before using 
these RS products.

We tested RF regression models using AMSR-2, ASCAT and SMOS for 
the three study sites (Fig. 9), using the same antecedent days as for 
SMAP. It can be seen that the three RS products all perform better in the 
Adenauer Bach and Fischbach catchments than in the Körsch catchment, 
confirming that catchment properties can influence the regression. In 
general, SMOS performs best among the three RS products, followed by 
ASCAT and AMSR-2. Looking more closely at the regressions, AMSR-2 
shows a larger spread than other products, especially in the Körsch 
and Fischbach catchments, indicating that it might not be suitable for 
transferring our framework. The R2 of SMOS reaches 0.88 and 0.90 for 
the Adenauer Bach and Fischbach catchments, respectively, and the 
spread is small, suggesting that the framework can be transferred to 
SMOS. For ASCAT, the R2 is slightly lower and the spread is slightly 
larger than for SMOS, but it still shows the possibility of transferring the 
framework. Nevertheless, the uncertainty and performance should be 
verified for specific study areas before transferring the framework to 
different RS products.

6. Conclusions

In this study, we developed a new approach using present and past 
remotely sensed soil moisture (RS SM) and regression models to better 
characterize antecedent soil water storage in flash flood simulations. 
Our approach solves the problem that RS SM cannot be directly assim
ilated into flash flood models because RS SM only contains soil moisture 
information for the top 5 cm of soil, while the flash flood model we used 
(LARSIM) represents the entire soil water storage with a single soil layer. 
RS SM from SMAP was used to build the relationship between RS SM and 
model soil water storage based on four regression models. In order to 
enhance flash flood modeling, the LARSIM model, which is used by 
several German federal states for hydrological forecasting, was coupled 
to PDAF, a data assimilation framework, to assimilate RS SM. This new 
approach was tested for the urbanized Körsch catchment and the 

Fig. 6. Comparison of the soil saturation simulation at the flood peak of the event in June 2021 for the Körsch catchment by open loop (OL, without data 
assimilation) and data assimilation using RS SM based on RF regression (DA_RF). Since the data assimilation using SWI (DA_SWI) is not better than OL, here we only 
present the comparison between OL and DA_RF for easier visualization.
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Fig. 7. Comparison of the soil saturation simulation at the flood peak of the event in July 2021 for the Adenauer Bach catchment by open loop (OL, without data 
assimilation) and data assimilation using RS SM based on RF regression (DA_RF). Since data assimilation using SWI (DA_SWI) is not better than OL, here we only 
provide the comparison between OL and DA_RF for easier visualization.

Fig. 8. Comparison of the soil saturation simulation at the flood peak of the event in May 2018 for the Fischbach catchment by open loop (OL, without data 
assimilation) and data assimilation using RS SM based on RF regression (DA_RF). Since data assimilation using SWI (DA_SWI) is not better than OL, here we only 
provide the comparison between OL and DA_RF for easier visualization.
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mountainous Adenauer Bach and Fischbach catchments in Germany, 
representing two different types of catchments prone to flash floods. 
Considering antecedent RS SM can result in good relationships between 
RS SM and model soil water storage for the three studied catchments 
since antecedent RS SM can to some extent provide SM information of 
present deeper soil layers. Assimilating the inferred soil water storage in 
the coupled LARSIM-PDAF model can enhance flood modeling in terms 
of the general performance (increase of ~ 0.22 in KGE), flood peak er
rors (reduction of ~ 15 % in the mean error), and uncertainty reduction 
in soil wetness simulations. The approach can be transferred to other RS 
products, such as ASCAT and SMOS. Although proper assimilation of RS 

SM can improve flash flood simulations, it is observed that uncertainty 
in precipitation has a very large impact on simulating flash floods. 
Therefore, reducing, or better quantifying precipitation uncertainty will 
always be important for flash flood modeling in the future. Due to the 
availability of SMAP SM since 2015, we tested our new approach for four 
events per catchment. Future work should find more catchments 
affected by flash floods and more events to better verify the performance 
of the proposed approach. Nevertheless, the proposed approach 
considering the antecedent RS SM in the coupled flash flood and data 
assimilation model provides a feasible way to appropriately use RS SM 
for data assimilation for hydrological models with few or even a single 

Fig. 9. Performance of regressions using RF with 120, 105 and 105 antecedent days of RS SM for the Körsch, Adenauer Bach and Fischbach catchments, respectively. 
Three RS SM products were used, i.e. AMSR-2 (a, d and g), ASCAT (b, e and h) and SMOS (c, f and i).
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soil layer.
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