001     1035314
005     20250203103432.0
037 _ _ |a FZJ-2025-00372
041 _ _ |a English
100 1 _ |a Guasco, Laura
|0 P:(DE-HGF)0
|b 0
|e First author
111 2 _ |a MLZ User Meeting
|g MLZ User Meeting
|c München
|d 2024-12-05 - 2024-12-06
|w Fed Rep Germany
245 _ _ |a Requirements for hydrogen absorption experiments with RNR in Pd/Co/Pd
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1738049695_1424
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Pt/Co/Pt and Pd/Co/Pd heterostructures with perpendicular magnetic anisotropy (PMA) are traditionally used for magnetic recording. PMA can be tuned by e.g. thin film thickness, strain, ion bombardment or temperature. Recently, it has been shown that the absorption of hydrogen in the heavy metal modifies the interfacial spin- orbit coupling and hence reduces the PMA.[1-3] As a result, reversible and non-destructive toggling of the easy axis of magnetization between in-plane and out-of-plane orientation at room temperature was demonstrated in a Co/GdOx all-solid-state device for magnetic hydrogen sensing.[4]Resonance enhanced polarized neutron reflectometry (RNR) is an effective tool for studying the hydrogen uptake quantitatively and with time resolution of less than seconds and the hydrogen impact on the magnetic properties in PMA systems.[5]In this contribution we report on results of RNR experiments on hydrogen uptake in Pt/Co/Pt trilayers sand- wiched by 25 nm Nb layers on MgO(001) substrates fabricated by molecular beam epitaxy measured at D17 at ILL and the requirements to measure the switching of the easy axis on hydrogen uptake in the trilayer systems Pt/Co/Pt and Pd/Co/Pd.[1] S. M. Valvidares, et al., Phys. Rev. B 81, 024415 (2010)[2] K. Munbodh, et al., Phys. Rev. B 83 094432 (2011)[3] G. Causer et al., ACS Appl. Mater. Interfaces 38 35420 (2019) [4] J. Tan et al. Nature Materials 18 35 (2019)[5] L. Guasco et al., Nature Comm. 13 1486 (2022)
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 1
693 _ _ |0 EXP:(DE-MLZ)MBE-MLZ-20151210
|5 EXP:(DE-MLZ)MBE-MLZ-20151210
|e MBE-MLZ: Molecular Beam Epitaxy at MLZ
|x 0
700 1 _ |a Pütter, Sabine
|0 P:(DE-Juel1)142052
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Saerbeck, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Keller, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Khaydukov, Yury
|0 P:(DE-HGF)0
|b 4
909 C O |o oai:juser.fz-juelich.de:1035314
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142052
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21