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A B S T R A C T

Understanding the feedback mechanisms between roots and soil, and their effects on microbial communities, is
crucial for predicting carbon cycling processes in agroecosystems. Process-based modeling is a valuable tool for
quantifying biogeochemical processes and identifying regulatory mechanisms in the rhizosphere. A novel one-
dimensional axisymmetric rhizosphere model is used to simulate the spatially resolved dynamics of microor-
ganisms and soil organic matter turnover around a single root segment. The model accounts for two functional
groups with different life history strategies (copiotrophs and oligotrophs), reflecting trade-offs in functional
microbial traits related to substrate utilization and microbial metabolism. It considers differences in the acces-
sibility of soil organic matter by including the microbial utilization of low and high molecular weight organic
carbon compounds (LMW-OC, HMW-OC). The model was conditioned using Bayesian inference with constraint-
based parameter sampling, which enabled the identification of parameter sets resulting in plausible model
predictions in agreement with experimental evidence.
Mimicking the behavior of growing roots, the model assumed 15 days of rhizodeposition for LMW-OC. The

simulations show a decreasing pattern of dissolved LMW-OC away from the root surface. We observed a
dominance of copiotrophs close to the root surface (0–0.1 mm). Spatial patterns of functional microbial groups
persisted after rhizodeposition ended, indicating a legacy effect of rhizodeposition on microbial communities,
particularly on oligotrophic activity. Simulated microbial biomass exhibits a very rapid change within 0–0.2 mm
away from the root surface, which points to the importance of resolving soil properties and states at sub-
millimeter resolution. Microbial-explicit rhizosphere modeling thus facilitates elucidating spatiotemporal pat-
terns of microorganisms and carbon turnover in the rhizosphere. The identified legacy effect of rhizodeposition
on soil microorganisms might be leveraged for rhizosphere-based carbon stabilization strategies in
agroecosystems.

1. Introduction

The rhizosphere, the soil region surrounding plant roots, is signifi-
cantly influenced by root activity (Clark, 1949; Hinsinger et al., 2009;
Russell, 1978). The rhizosphere typically extends from less than 1 mm to
1 cm from the root surface into the surrounding soil (Schenck zu
Schweinsberg-Mickan et al., 2012), although this range can vary based
on several factors, including plant species, soil type, and environmental
conditions. Rhizodeposition, which involves the release of organic

compounds such as sugars, amino acids, organic acids, and dead root
cells, is crucial for shaping the rhizosphere environment. These com-
pounds serve as substrates for microbial metabolism, supporting diverse
microbial communities and significantly elevating microbial abundance
in the rhizosphere compared to bulk soil (Blagodatskaya et al., 2021;
Hartmann et al., 2009). Despite its importance, predicting the spatial
and temporal patterns of microbial abundance influenced by rhizode-
position remains challenging due to the complexity of rhizosphere in-
teractions. Process-based modeling has emerged as a powerful tool in
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addressing these challenges, providing insights into microbial commu-
nity dynamics, organic matter turnover, and nutrient availability (König
et al., 2020; Kuppe et al., 2022; Schnepf et al., 2022).
In their recent review of rhizosphere modeling approaches, Kuppe

et al. (2022) provided a comprehensive framework to simulate various
aspects of the rhizosphere, encompassing water flow, solute transport
and reaction, rhizodeposition, microbial growth, and the intricate in-
teractions within the microbial community. They summarized that
rhizosphere models have successfully simulated diffusion and advection
of solute carbon (C), along with a single type of microbial biomass (e.g.,
Darrah, 1991; Dupuy and Silk, 2016) and sorption (Raynaud, 2010;
Szegedi et al., 2008). More ecologically oriented models have provided a
more detailed representation of microbial C at higher temporal resolu-
tion (Faybishenko and Molz, 2013; Kravchenko et al., 2004; Raynaud
et al., 2006; Strigul and Kravchenko, 2006; Zelenev et al., 2006). Yet,
most of the microbial rhizosphere models have considered microbial
biomass as a single pool, neglecting the diversity of microorganisms that
is expressed in their differing physiological traits (Darrah, 1991; Dupuy
and Silk, 2016; Scott et al., 1995). Analogously, the models that
considered microbial diversity neglected the spatial variation of mi-
crobial biomass in the rhizosphere (Faybishenko and Molz, 2013; Strigul
and Kravchenko, 2006; Zelenev et al., 2006).
The functional traits of soil microorganisms determine how indi-

vidual microorganisms and microbial communities respond to C and
nutrient availability and how they utilize organic compounds (Fatichi
et al., 2019; Hellweger et al., 2016; Wieder et al., 2015). Malik et al.
(2020) categorized microbial communities into different groups based
on their life history strategies, characterized by sets of traits that are
interrelated due to physiological trade-offs. These strategies allow for
the classification of microbial communities along a continuum that may
be bimodal to trimodal. The bimodal classification typically includes
r-strategists, characterized by a short life expectancy and rapid repro-
duction, and K-strategists, which have a longer life expectancy and
lower reproductive capacity (Fierer et al., 2012; Lauro et al., 2009).
These microbial communities are often labelled copiotrophic and
oligotrophic, respectively (Fierer et al., 2012). Considering these life
history strategies can help predict how different microbial communities
respond to changing environmental conditions and resource
availability.
Nuccio et al. (2020) demonstrated that microbial diversity within

rhizosphere microorganisms is not only high but also spatially and
temporally regulated, which supports coexistence and niche differenti-
ation. Additionally, an experimental study highlighted the role of
growth rate traits in rhizosphere microorganisms, showing that nutrient
availability can stimulate the population of fast-growing bacteria while
leading to an increase in slow-growing bacteria under nutrient-poor
conditions (Blagodatskaya et al., 2014). Incorporating these insights
into a modeling framework for the rhizosphere can enhance our ability
to predict stress responses and the impact on nutrient uptake by plants
(Dupuy and Silk, 2016).
Spatiotemporal distributions of copiotrophic (r-strategists) and

oligotrophic (K-strategists) microorganisms have been simulated by
different mathematical models in soil systems (Pagel et al., 2020;Wieder
et al., 2015). There is currently a lack of mathematical models that ac-
count for spatial changes in microbial biomass and organic carbon as a
function of distance from the root surface while also incorporating life
history strategies in the rhizosphere. Developing such a model poses
significant challenges, primarily related to the parameterization of mi-
crobial traits and the model validation process. Both are hindered by the
limited availability of experimental data.
Recent research in 16S rDNA amplicon sequencing, which is used to

determine microbial species in the rhizosphere, have the potential to
address these challenges. Studies have indicated that the copy number of
rrn operons in a microorganism’s genome, is associated with various
functional traits of microorganisms, such as growth rate and Carbon Use
Efficiency (Roller et al., 2016). Microorganisms with high rrn copy

numbers are typically associated with copiotrophs, while those with a
low number of rrn copies tend to be oligotrophs (Bledsoe et al., 2020;
Bulgarelli et al., 2013; Matthews et al., 2019; Zarraonaindia et al.,
2015). Ling et al. (2022) investigated rrn copy numbers based on 557
pairs of published 16S rDNA amplicon sequence data from different
ecosystems worldwide. They reported that the rhizosphere exhibited
6.6% more rRNA operon counts than the bulk soil, suggesting a pref-
erence for the fast-growing bacteria (copiotrophs) in the rhizosphere
rather than bulk soil.
In light of all the recent research on microbial classification in the

rhizosphere, we aim to explore how rhizodeposition influences the
spatiotemporal distribution of microbial functional groups in the
rhizosphere. We anticipate a higher copiotrophic biomass compared to
that of oligotrophs near the root surface. It is however unclear how their
concentrations and gradients will be affected by varying rhizodeposition
rates associated to different root ages. For low molecular weight organic
C compounds (LMW-OC), rhizodeposition of a growing root is much
higher at the root tips and a few centimeters behind compared to the
older part of the root (Landl et al., 2021a). At a location, through which
the root has grown, rhizodeposition will therefore considerably decrease
with time. Estimating the spatiotemporal patterns of microorganisms
can offer insights into the rhizodeposition legacy effect, which shows the
enduring influence of plant roots on the soil environment even after
organic C release has ended. This effect significantly shapes subsequent
root development through various mechanisms, such as the enrichment
of beneficial (positive effect on plant growth) or pathogenic (negative
effect on root development) microorganisms (Hu et al., 2018; Philippot
et al., 2013) and microbial-plant nutrient competition (Bledsoe et al.,
2020; López et al., 2023). Despite this, there exists limited knowledge
regarding the persistence of these legacy effects on soil microorganisms
under the influence of rhizodeposition (Nannipieri et al., 2023).
In this study, we have developed a process-based model that simu-

lates the distribution of two diverse microbial functional groups and C
turnover in the rhizosphere. We incorporated the structure of a bimodal
(oligotrophs-copiotrophs) trait-based soil organic matter model (Pagel
et al., 2020) in a 1-D axisymmetric rhizosphere model to simulate the
effect of rhizodeposition on these microbial functional groups. Adapta-
tion of microorganisms to nutrient stress environments is simulated
assuming two different states for each microbial group: active and
dormant. Since microbially explicit models typically show equifinality
(Marschmann et al., 2019) and measured data are often not yet infor-
mative enough to calibrate such trait-based models, our study applies a
Bayesian model-conditioning method that leverages evidence-based
knowledge derived from measurements to constrain the parameter
space of the model such that it yields reliable predictions of microbial
dynamics and C flow in the rhizosphere (Chavez Rodriguez et al., 2022).
At the end, sensitivity analysis was performed to identify the most
influential parameters affecting microbial legacy. The duration of legacy
effects for two different microbial functional groups in the rhizosphere
was estimated and compared under low and high rhizodeposition
scenarios.

2. Methods

2.1. Rationale and concept

The TraiRhizo model simulates carbon (C) and microbial dynamics
in a soil cylinder around an individual root (Fig. 1A). Consistent with
other rhizosphere modeling approaches (Dupuy and Silk, 2016; Darrah,
1991) and in line with experimental evidence showing a typical rhizo-
sphere extent of 0.5–4 mm (Kuzyakov and Razavi, 2019), we used a
fixed rhizosphere radius of rr = 2 mm. While the radius rb defines the
outer domain boundary of the model, the radius rr defines the rhizo-
sphere extent used to calculate process constraints for model parame-
terizion. The model considers a one-dimensional (1D) axisymmetric
domain in cylindrical coordinates. In line with the soil continuum
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concept of soil organic matter cycling (Lehmann et al., 2020) and similar
to the conceptualization in the 2D spatially explicit trait-based soil C
cycling model SpatC (Pagel et al., 2020). TraiRhizo distinguishes oli-
gotrophs (CO) and copiotrophs (CC) (Fig. 1B). These strategies are re-
flected in the parameterization of trade-offs between functional traits
representing functional characteristics of microbial populations similar
to existing trait-based soil C cycling models (Wieder et al., 2015). The
model additionally reflects the physiological adaptation of microor-
ganisms to limited C supply by considering dynamic shifts between
active (Ca

O,Ca
C) and dormant (Cd

O,Cd
C) physiological states (Fig. 1B).

TraiRhizo distinguishes two C pools with respect to their assimila-
bility by microorganisms (Fig. 1B). Rhizodeposition is represented in the
model as a constant input of these two organic C pools from the root to
the soil. While high-molecular-weight organic C compounds (CH)

represent organic compounds with a high molecular mass (≥600 Da)
that cannot be taken up by microorganisms directly, low-molecular-
weight organic C compounds (CL) stand for organic molecules with a
low molecular mass (<600 Da), which can be taken up into microbial
cells (Lehmann and Kleber, 2015). We assume high-molecular-weight
organic carbon compounds can be transformed to
low-molecular-weight organic carbon compounds by extracellular en-
zymes of oligotrophs. While extracellular enzymes are not represented
as a state variable in the model, this transformation process is controlled
by the abundance of active oligotrophs (eqn. (15)). The model considers
dissolved and sorbed low-molecular-weight organic C compounds (Cl

L,

Cs
L
)
. Only dissolved low-molecular-weight organic C compounds are

directly accessible for microorganisms.

2.2. Governing equations

TraiRhizo is formulated as a coupled system of partial and ordinary
differential equations. Section 2.2.1 and 2.2.2 introduces the state var-
iables (Table 1) and corresponding governing equations describing their
dynamics. Mathematical formulations of process rate expressions (F)
and functions are given in section 2.2.3 (Table 2). Descriptions, units
and ranges of parameters are summarized in Tables 3 and 4.

2.2.1. Soil organic matter
The dynamics of soil organic matter pools is given by the following

mass balances, transport and transformation processes:
High-molecular-weight organic C compounds

θ
∂CH

∂t = − Fdepoly + pHFdecay +
∂
∂r

(

DH
(

θ)
∂CH
∂r

)

+
1
r
DH

(

θ)
∂CH

∂r (1)

Low-molecular-weight organic C compounds

θR
∂Cl

L
∂t = Fdepoly −

1
YO

Fgrowth,O −
1
YC

Fgrowth,C +(1 − pH) Fdecay − Fuptake,L

− ρB Fsorp +
∂
∂r

(

DL(θ)
∂Cl

L
∂r

)

+
1
r
DL(θ)

∂Cl
L

∂r − qwr
∂Cl

L
∂r

(2)

where θ is the volumetric water content, pH is the proportion of high-
molecular-weight organic C compounds (HMW-OC) formed from dead

Fig. 1. Model structure A) 3D visualization of the root free and root influenced soil with 1D axisymmetric representation of the modeled domain B) model carbon
pools and their interactions in the 1D axisymmetric modeling framework.

Table 1
Model pools and initial conditions.

Variable Definition Unit Initial
concentration

CH Concentration of high-molecular-
weight organic C compounds in
soil

mg
cm− 3solution

7–14

Cl
L Concentration of dissolved low-

molecular-weight organic C
compounds in soil solution

mg
cm− 3solution

0.0001-0.04

Cs,2
L

Sorbed concentration of low-
molecular-weight organic C
compounds in sorption region two

mg g− 1 solid 0.0001-0.5

Ca
O Concentration of active

oligotrophs
mg cm− 3 soil 0–0.003

Ca
C Concentration of active

copiotrophs
mg cm− 3 soil 0–0.003

Cd
O Concentration of dormant

oligotrophs
mg cm− 3 soil 0.11-0.12

Cd
C Concentration of dormant

copiotrophs
mg cm− 3 soil 0.11-0.16

CCO2 Concentration of carbon dioxide mg cm− 3 soil 0.11-0.18

* All state variables are expressed in mass-based units of C and they are
expressed per soil volume for microbial consortia, per soil mass for sorbed C
pools (Cs,1L ; C

s,2
L ), and per solution volume for the rest of the organic C pools (CH,

ClL).
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microbial biomass, R is the retardation factor (see Appendix 1.2.2 for the
derivation), YO and YC denote growth yields of oligotrophs and copio-
trophs, and ρB is the bulk density of soil.
Transport of LMW-OC (eqn. (2)) is described by the advection-

diffusion equation within a 1D axisymmetric coordinate system (see
Appendix 1.1 for the complete derivation). To account for typical
characteristics of gel-like mucilage released from roots, TraiRhizo as-
sumes slow diffusion of HMW-OC in soil and neglects convective
transport. Carbon input via rhizodeposition is defined by the corre-
sponding boundary conditions (eqns. (27) and (28)).
The radial flux (qwr) is determined by the radial flux at the root

surface
(
qwra ) and decreases proportionally with the ratio of the root

cylinder radius (ra) to the radial distance from the root center (r) (see
Appendix 1.3 for the derivation):

qwr = − qwra
ra
r

(3)

The apparent diffusion coefficient is given by (Millington and Quirk,
1961):

Di(θ) =Di,w

(
θ
10
3

φ2

)

for i=H, L (4)

where DH,w and DL,w are the diffusion coefficient in pure water for HMW-
OC and LMW-OC, respectively. Soil porosity (φ) is defined as:

φ=1 −
ρB

ρS
(5)

2.2.2. Microbial consortia
Microbial concentrations change due to growth, deactivation, reac-

tivation and decay processes:
Active oligotrophs

∂Ca
O

∂t = Fgrowth,O − Fdeact,O + Freact,O −
1
Y
Fa
decay,O (6)

Active copiotrophs

∂CaC
∂t = Fgrowth,C − Fdeact,C + Freact,C −

1
Y
Fadecay,C (7)

Dormant oligotrophs

∂Cd
O

∂t = Fdeact,O − Freact,O −
1
Y
Fd
decay,O (8)

Dormant copiotrophs

∂Cd
C

∂t = Fdeact,C − Freact,C −
1
Y
Fd
decay,C (9)

where Y denotes the maintenance yield. Total CO2-production (i.e.,

Table 2
Process rates and functions.

Internal
flows

Definition Unit

Fdepoly Depolymerization of high-molecular-weight organic C
compounds to low-molecular-weight organic C
compounds

mg cm− 3

d− 1

Fdecay Total microbial decay due to endogenous maintenance mg cm− 3

d− 1

Fjdecay,i Decay of the corresponding microbial group i with i =
{O,C} in the corresponding metabolic state j with j =
{active, dormant}

mg cm− 3

d− 1

Fgrowth,i Growth of the corresponding microbial group i with i =
{O,C} on low-molecular-weight organic C compounds

mg cm− 3

d− 1

Fdeact,i Deactivation of the corresponding microbial group i
with i = {O,C}

mg cm− 3

d− 1

Freact,i Reactivation of the corresponding microbial group i
with i = {O,C}

mg cm− 3

d− 1

Fuptake,L Total microbial uptake of low-molecular-weight
organic C compounds

mg cm− 3

d− 1

Fjuptake,L,i Specific microbial uptake of low-molecular-weight
organic C compounds by group i with i = {O,C} in
metabolic state j with j = {active, dormant}

mg cm− 3

d− 1

Fjmaintanence,i
Total maintenance requirements of the corresponding
microbial group i with i = {O,C} in the corresponding
metabolic state j with j = {active, dormant}

mg cm− 3

d− 1

Fsorp Sorption of dissolved low-molecular-weight organic C
compounds

mg cm− 3

d− 1

Table 3
Model parameters and their defined ranges.

Parameters Definition Unit Initial
Interval

Source

Geometry
ra Radius of root cylinder cm 10− 3-10− 1 1 2 3
rb Radius of soil cylinder cm 1–10 no impact
JL,root Root-released flux of

low-molecular-weight
organic C compounds

mg
cm− 2d− 1

10− 3-3.
10− 1

4 5 6

JH,root Root-released flux of
high-molecular-weight
organic C compounds

mg
cm− 2d− 1

10− 3-3.
10− 1

6

Soil organic matter
pH Proportion of high-

molecular-weight
organic C compounds
formed from microbial
biomass due to decay by
endogenous
maintenance

1 0–1 full range

Vmax,H Maximum reaction rate
of enzymes targeting
high-Molecular-weight
organic C compounds

d− 1 10− 3-1 7

KH Half-saturation
coefficients of enzymes
targeting high-
molecular-weight
organic C compounds

mg cm− 3 10− 6 - 10 7

DL,W Diffusion coefficient of
low-molecular-weight
organic C compounds in
water

cm2d− 1 10− 2-2,5 2 8

DH,w Diffusion coefficient of
high-molecular-weight
organic C compounds in
water

cm2d− 1 0.003456 1

fsorp Fraction of region 1
sorption sites

1 0.5 13

Cs
L,max Maximum sorption

capacity
mg g− 1 0.0291-

1.6925
9 10 11 12

kP Langmuir binding
coefficient

mg cm− 3 0.006-0.25 9 10 11 12

α Rate coefficient of mass
transfer between region
1 and 2 sorption sites

d− 1 0.1 13

Soil properties
ρB Soil bulk density g cm− 3 1–1.6 typically

observed in
topsoils

ρS Solid phase density g cm− 3 2.650 14
θ Volumetric soil water

content
cm3

cm3
0.3 fixed

qwra Water flux at root
surface

cm d− 1 10− 7-10 15 16 17

Independent variables
r Radial distance from

root center
cm ​ ​

t Simulation time d ​ ​

* 1 Landl et al., 2021a 2 Raynaud, 2010 3 Williams and Yanai, 1996 4 Darrah,
1991 5 Kravchenko et al., 2004 6 Chari et al., 2024 7 Pagel et al., 2020 8 Pagel
et al., 2016 9Mayes et al., 2012 10 Jagadamma et al., 2012 11 Jagadamma et al.,
2014 12 Kothawala et al., 2009 13 Streck et al., 1995 14 Blake, 2008 15 Norton
and Firestone, 1991 16 Von Jeetze et al., 2020 17 Zarebanadkouki et al., 2019.

A.K. Sırcan et al. Soil Biology and Biochemistry 202 (2025) 109698 

4 



respiration) follows from the C mass balance:

∂CCO2

∂t =
1 − YO

YO
Fgrowth,O +

1 − YC

YC
Fgrowth,C +

1 − Y
Y

Fdecay + Fuptake,L (10)

2.2.3. Process rates and functions

2.2.3.1. Sorption. The amount of sorbed C might alter the distribution
of microbial groups, which have distinct strategies dependent on sub-
strate availability. In the defined model parameter space (Tables 3 and
4), the linear sorption model might not be adequate to reflect the
sorption isotherm precisely enough (Streck et al., 1995). Unlike in most
other rhizosphere models (Darrah, 1991; Nye and Marriott, 1969;
Raynaud, 2010), the sorption of LMW-OC from soil solution is repre-
sented by a nonlinear sorption model. This model uses a two-stage
one-rate approach, considering two sorption regions of different acces-
sibility (Streck et al., 1995). While the sorption sites in region 1 are in
direct contact with the soil solution, region 2 sites exchange only with
region 1 sites. Sorption of LMW-OC from soil solution to region 1
sorption sites is reflected as an equilibrium process. Mass transfer from
region 1 to region 2 sorption sites occurs as a kinetic process, probably
reflecting a diffusion process into the intra-porous space of soil particles.
The total sorbed concentration (Cs

L) is given by:

Cs
L = ρB fsorpCs,1

L + ρB

(
1 − fsorp

)
Cs,2

L (11)

where fsorp is the fraction of region 1 sorption sites. The variables Cs,1
L and

Cs,2
L stand for sorbed concentrations in regions 1 and 2, respectively.
Equilibrium sorption at region 1 sites follows a Langmuir isotherm
(Swenson and Stadie, 2019):

Cs,1
L =Cs

L,max
Cl

L

kP + Cl
L

(12)

Cs
L,max represents the maximum sorption capacity of LMW-OC, while kP
denotes the Langmuir constant. The change of concentration of sorbed
LMW-OC in region 2 is given by:

∂Cs,2
L

∂t =
1

1 − fsorp
Fsorp (13)

Kinetic sorption is described as mass transfer from region 1 to region
2 sites:

Fsorp = α
(
Cs,1

L − Cs,2
L
)

(14)

where α is a rate coefficient.

2.2.3.2. Microbial processes. Active oligotrophs catalyze the depoly-
merization of HMW-OC according to Michaelis–Menten kinetics (cf.
Pagel et al., 2020):

Fdepoly = vmax,H
CH

KH + CH
Ca

O (15)

where vmax,H is the maximum reaction rate and KH is the half saturation
constant.
Microbial growth, decay, activation and inactivation follow the

formulations of the SpatC model with small modifications (Pagel et al.,
2020):

Fdecay = Fa
decay,O + Fa

decay,C + Fd
decay,O + Fd

decay,C (16)

Fj
decay,i = Fj

maintanence,i − Fj
uptake,L,i (17)

Where the index i represents oligotrophs (O) or copiotrophs (C), and the
index j represents active (a) or dormant (d).
In eqn. (17), the first term on the RHS represents total maintenance

requirements (Fj
maintanence,i) and the second term represents the uptake of

LMW-OC for exogenous maintenance
(
Fj
uptake,L,i). The difference between

both flows defines microbial decay (Fi
decay,i) as a result of endogenous

maintenance.
The following equations define total maintenance requirements:

Fa
maintanence,i =mmax,iCa

i (18)

Fd
maintanence,i =mmax,iβiCd

i (19)

where mmax,i is the maximum maintenance requirement for each mi-
crobial group and βi is the reduction factor for the dormant state.
The uptake of LMW-OC for exogenous maintenance and microbial

growth on LMW-OC according to Monod kinetics is given by:

Fuptake,L = Fuptake,L,O,a + Fuptake,L,C,a + Fuptake,L,O,d + Fuptake,L,C,d (20)

Fa
uptake,L,i =

mmax,iCl
Lki,L

mmax,i + Cl
Lki,L

Ca
i (21)

Fd
uptake,L,i =

mmax,iCl
Lki,L

mmax,i+Cl
Lki,L

βiCd
i (22)

Table 4
Model parameters and their defined ranges.

Microbial consortia

Parameters Definition Unit Microbial group i
= O

Microbial group i
= C

Source,
remark

μmax,i Maximum growth rate coefficient for the corresponding microbial group i with i = {O,C} d− 1 10− 2-10 10− 1-100 7
ki,L Specific substrate affinity to low-molecular-weight organic C compounds for microbial

group i with i = {O,C}
cm3 mg− 1

d− 1
1–500 1–500 8

Yi Growth yield on low-molecular-weight organic C compounds for the corresponding
microbial group i with i = {O,C}

mg(C)
mg(C)

0–1 0–1 full range

mmax,i Maximum maintenance rate coefficient for the corresponding microbial group i with i =
{O,C}

d− 1 10− 5-2 10− 5-2 8

βi Reduction factor of maintenance requirements in dormant state for the corresponding
microbial group i with i = {O,C}

1 10− 2-1 10− 4-1 7 18 19

kd,i Deactivation rate coefficient for the corresponding microbial group i with i = {O,C} d− 1 10− 2-100 10− 2-100 7 20
kr,i Reactivation rate coefficient for the corresponding microbial group i with i = {O,C} d− 1 10− 2-100 10− 2-100 7 20
Cthres,i Threshold concentration for reactivation and deactivation for the correspondingmicrobial

group i with i = {O,C}
mg cm− 3 3. 10− 7-0.3 3. 10− 7-0.3 7

Y Maintenance yield 1 0–1 full range
a Sharpness parameter for the switch function from active to dormancy 1 ​ 7

* 18 Wieder et al., 2015 19 Zhang et al., 2022 20 Stolpovsky et al., 2011.

A.K. Sırcan et al. Soil Biology and Biochemistry 202 (2025) 109698 

5 



Fgrowth,i =
μmax,i Cl

L ki,L

μmax,i + Cl
L ki,L

Ca
i (23)

where ki,L represents the specific substrate affinity and μmax,i is the
specific growth rate for each microbial group (i = O,C).
Activation and inactivation follow first-order kinetics:

Fdeact,i =(1 − ϕi) kd,iCa
i (24)

Freact,i =ϕikr,iCd
i (25)

Here ϕi is the switch function between two states of microorganisms and
defined as:

ϕi=
1

exp
(

Cthres,i − Cl
L

a Cthres,i

)

+ 1
(26)

where Cthres,i is the threshold concentration of dissolved LMW-OC for
deactivation and reactivation, and a reflects the sharpness of the tran-
sition between states (Pagel et al., 2020) for each microbial group (i=O,
C).

2.2.4. Boundary conditions
The duration of rhizodeposition was set to 15 days for LMW-OC and

9 days for HMW-OC. Landl et al. (2021b) simulated rhizodeposition
hotspot for mucilage and citrate in a growing root system. The maximum
values from the simulation results for the duration of rhizodeposition
hotspots were used. However, a reasonable range for the total amount of
rhizodeposited C was derived based on an extensive literature search
(Table 3).
We used a Cauchy boundary condition to prescribe C flux at the root

soil interface (r = ra):

2.2.4.1. Low-molecular-weight organic C compounds

− DL(θ)
∂Cl

L
∂r + qwrCl

L

⃒
⃒
⃒
⃒
r=ra

= JL,root(t) (27)

2.2.4.2. High-molecular-weight organic C compounds

− DH(θ)
∂CH

∂r

⃒
⃒
⃒
⃒
r=ra

= JH,root(t) (28)

All simulations assume zero flux at the outer boundary (r = rb).
Similar to the assumption in Raynaud (2010), the soil radius for a root
was chosen to be sufficiently large (see Table 3) to safely assume that
there is no impact on the adjacent root.

2.3. Model implementation and programming

The model equations were solved using COMSOL multiphysics 5.5
with MATLAB R2020b by using adaptive time steps, adjusting maximum
time step to 0.1 d (Pagel et al., 2020; Schwarz et al., 2022). All pre- and
post-processing and parameter sampling was done using the MATLAB
Livelink (communication protocol between COMSOL and MATLAB via
JAVA) feature.

2.3.1. Model initialization
A 100-day spin-up simulation period without rhizodeposition and

root water uptake was run to initialize all state variables to steady-state
values. After this spin-up, the simulations considered active root depo-
sition and root water uptake. To initialize the spin-up simulations, initial
values from a microbial explicit soil organic model (SpatC) were applied
as initial conditions (Pagel et al., 2020). For spin-up simulations, initial
values of LMW-OC at region 2 sorption sites (Cs,2

S ) were assumed to be in
equilibrium with region 1 sorption sites (Cs,2

S = Cs,1
S )

2.4. Model parametrization: constraint-based Markov Chain Monte Carlo
parameter sampling method

We applied a constrained-based Markov Chain Monte Carlo (cb
MCMC) parameter sampling method (Chavez Rodriguez et al., 2022) to
derive representative posterior parameter distributions for the TraiR-
hizo model. These distributions reflect the viable parameter space
(Zamora-Sillero et al., 2011) in a way that leads to predictions of
characteristic system behavior. Briefly, the method leverages experi-
mental evidence by formulating parameter and process constraints
which formalize the current knowledge and understanding of model
parameterization and system behavior. The cb MCMC method ensures
that preset quantitative equality and inequality relationships between
parameters are maintained. Moreover, it also ensures such relationships
between model outputs. The cb MCMC method uses an iterative algo-
rithm that successively increases the number of parameter and process
constraints to efficiently explore the viable parameter space. We defined
13 parameter constraints (Table 5) and 9 process constraints (Tables 6
and 7). These constraints were derived from a literature analysis of the
existing experimental evidence on rhizosphere processes and their
controls.

2.4.1. Parameter constraints
Parameter constraints related to microbial physiology and substrate

usage were defined according to a bimodal life history strategy scheme,
which distinguishes between copiotrophs and oligotrophs (Treseder,
2023). While copiotrophs are characterized by higher metabolic rates,
oligotrophs are characterized by higher substrate affinity and growth
yield. The constraints are expressed as relations between biokinetic
parameters derived from published experimental data sets and theo-
retical reflections.

2.4.2. Process constraints
To align with the defined process constraints in experiments, we

made a pragmatic choice of a rhizosphere extent (rr) of 2 mm, a common
choice in analogous experimental setups (Kuzyakov and Razavi, 2019).
The dynamics of model outputs in rhizosphere and bulk soil was also
evaluated based on this definition. The impact of varying rr values be-
tween 0.5 and 2 mm on these distributions was analyzed. The mean

Table 5
Parameter constraints.

Constraint Description/Explanation Source

1. μmax,C > μmax,O Maximum growth rate of copiotrophs is
higher than maximum growth rate of
oligotrophs.

21 22

2.
kO,L > kC,L Specific substrate affinity to low-

molecular-weight organic C compounds for
oligotrophs is higher than for copiotrophs.

3. mmax,C > mmax,O Maximum maintenance rate coef. must be
higher for copiotrophs than for
oligotrophs.

4. Cthresh,C > Cthresh,O Oligotrophs (K-strategists) are adapted to
low carbon and nutrient availability.

5. mmax,i < μmax,i

i ∈ {O,C }
This logical constraint ensures that
organisms are “fit to survive".

​

6. kr,i ≥ kd,i
i ∈{O,C }

Transition to dormant (resp. potentially
active) state is typically slower than
reactivation.

23 24

7.
kj,i > μmax,i

i ∈{O,C } and j ∈{r,
d }

Changes of metabolic state are faster than
growth, death, and changes in
composition.

23 25

8.
YO > YC Oligotrophs are slow-growing at high

yield, copiotrophs are fast-growing at low
yield.

26 27 28

* 21 Blagodatskaya et al., 2009 22 Papp et al., 2020 23 Blagodatskaya and
Kuzyakov, 2013 24 Konopka, 1999 25 Salazar et al., 2019 26 Fierer et al., 2007
27 Ho et al., 2017 28 Lipson, 2015.
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concentration over the rhizosphere extent was calculated using the
MATLABmean function, with the error being less than 10% compared to
the analytical mean calculation. Each process constraint set is derived
from multiple sets of experimental data collected from wheat crops
grown in various soil types, textures, root segments, and ages, under
differing experimental conditions. At the end, the largest interval found
for each metric was defined as a constraint. Table 6 shows the model
outputs that were used in setting the process constraints.

3. Results

3.1. Model parameterization using constraint-based Markov Chain Monte
Carlo sampling

Conditioning model parameters and outputs with defined con-
straints, using cbMCMC, resulted in 1647 unique scenarios that fulfill all
the parameter and process constraints, referred as fully constrained
model simulations. To observe the effect of parameter and process
constraints separately, the same number of model simulations fulfilling
only the parameter constraints were also calculated. We estimated the
posterior distribution of 34 model parameters. Our model introduces a
new probability distribution function for each microbial trait-related
parameter corresponding to each functional group, based on the fully
constrained parameter sets, and compares it with the one derived from
the parameter sets which fulfill only parameter constraints (Figs. 2 and
3). To prevent sampling excessively high values within the given in-
terval, each parameter is uniformly sampled on a logarithmic scale.

3.1.1. Parameters related to microbial traits
Parameter constraint 1 (Table 5) informs the model that the

maximum growth rate of copiotrophs (μmax,C) is higher than the
maximum growth rate of oligotrophs (μmax,O) (Blagodatskaya et al.,
2009; Papp et al., 2020), in parallel to parameter constraint 7, which
states that μmax,O and μmax,C are slower than the changes of metabolic
states (kr,O, kd,O, kr,C, kd,C) (Blagodatskaya and Kuzyakov, 2013; Salazar
et al., 2019). Additionally, parameter constraint 5 ensures that μmax,O

and μmax,C are faster than the maximum maintenance rate of microor-
ganisms (mmax,O and mmax,C) (Blagodatskaya and Kuzyakov, 2013; Papp
et al., 2020). As a result, as seen in the distributions of μmax,O and μmax,C,
the parameter constraints successfully narrow down the corresponding
parameter distributions as expected (Fig. 2). The interesting result here

is the further shift to lower values in the distributions of μmax,O (0.01–0.5
d− 1) and μmax,C (0.11–10 d− 1) as a result of conditioning the model by
process constraints. We also observe an effect of process constraints on
decreasing the parameter space of mmax,O (<0.01 d− 1) and mmax,C (<0.1
d− 1) by shifting the posterior distribution of the corresponding param-
eters to lower values (Fig. 2).
Trade-offs in microbial traits such as substrate affinity and yield are

addressed through parameter constraints 2 and 8 (Table 5). These con-
straints inform the model parameters in a way that substrate affinity for
oligotrophs (kO,L) must be higher than substrate affinity for copiotrophs
(kC,L) and yield for oligotrophs (YO) must be higher than yield for
copiotrophs (YC) (Blagodatskaya et al., 2009; Fierer et al., 2007; Ho
et al., 2017; Lipson, 2015; Papp et al., 2020). The distribution of the
corresponding parameters show that parameter constraints successfully
condition the corresponding model parameters (Fig. 2). The application
of process constraints has a slight effect on the distributions of kO,L and
YO, shifting to higher values; however, the distributions of kC,L and YC

reflect significant shifts to higher values in the posterior distributions
(Fig. 2), highlighting the importance of process constraints in estimating
a more reliable parameter distribution.

Table 6
Model outputs used for process constraints.

Variable Definition Expression Unit

MBR Mean total microbial biomass in
rhizosphere

meanR
(
Ca
O + Ca

C +

Cd
O + Cd

C
)

mg
cm− 3

MBB Mean total microbial biomass in
bulk soil

meanB
(
Ca
O + Ca

C +

Cd
O + Cd

C
)

mg
cm− 3

SOCR Mean total organic carbon in
rhizosphere

meanR
(
Cl
L + Cl

H
) mg

cm− 3

SOCB Mean total organic carbon in
bulk soil

meanB
(
Cl
L + Cl

H
) mg

cm− 3

MBa
R Mean total active microbial

biomass in rhizosphere
meanR

(
Ca
O + Ca

C
)

mg
cm− 3

LMW −

DOCR

Mean total dissolved low-
molecular-weight organic C
compounds in rhizosphere

meanR
(
Cl
L
) mg

cm− 3

LMW − DOCB Mean total dissolved low-
molecular-weight organic C
compounds in bulk soil

meanB
(
Cl
L
) mg

cm− 3

MBi
R Mean total microbial biomass of

the corresponding functional
group in rhizosphere

meanR
(
Ca
i +Cd

i
)

where i ∈ {O,C}
mg
cm− 3

MBi
B Mean total microbial biomass of

the corresponding functional
group in bulk soil

meanB
(
Ca
i +Cd

i
)

where i ∈ {O,C}
mg
cm− 3

Table 7
Defined process constraints.

Constraint Description/Explanation Source

1. 0.04 < MBR <

1.2
The range for the concentration of
microbial biomass in the
rhizosphere for different soil types,
textures, experimental conditions.

29 30 31 32 33 34

2.
1<

MBR

MBB
< 2.5 Microbial biomass is higher in the

rhizosphere than bulk soil and lower
than a threshold value.

34 35

3.
4 < SOCR < 16 The range for soil organic carbon in

the rhizosphere for different soil
types, textures, experimental
conditions.

32 36

4.
0.66 <

SOCR

SOCB
<

2

The range for ratio of soil organic
carbon in the rhizosphere to bulk
soil for different soil types, textures,
experimental conditions.

32 36

5. 0.0006 <
MBa

R
MBR

< 0.6

The range for ratio of active
microbial biomass to total microbial
biomass for different soil types,
textures, experimental conditions.

33 37 38 39

6.
LMW − DOCR <

0.55
Based on water extractable organic
carbon measurements. Water
extractable organic carbon should
include dissolved organic carbon
(DOC) together with some sorbed
carbon mass therefore it must be
higher than the DOC concentration.

33 39

7.
LMW − DOCR

LMW − DOCB
>

1

Based on water extractable organic
carbon measurements.

33 38

8.
MBC

R
MBO

R
>

MBC
B

MBO
B

According to 557 pairs of published
16S rDNA amplicon sequences data
from the bulk soils and rhizosphere
in different ecosystems around the
world, it is reported that the
rhizosphere had 6.6% more rRNA
operon counts, indicating that more
fast-growing bacteria (r-strategists)
preferentially colonize the
rhizosphere than the bulk soil. The
rhizosphere was dominated by
copiotrophic microorganisms such
as Proteobacteria and Bacteroidetes.

40 41

9.
MBC

R > MBO
R

* 29 Chen et al., 2015 30 Jin et al., 2022 31 Xu et al., 2019 32 Yang et al., 2013
33 Schenck zu Schweinsberg-Mickan et al., 2012 34 Bonkowski et al., 2000 35
Kuzyakov and Blagodatskaya, 2015 36 Jat et al., 2021 37 Blagodatskaya et al.,
2021 38 Fang et al., 2015 39 Li et al., 2013 40 Ling et al., 2022 41 Bledsoe et al.,
2020.
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3.1.2. Parameters related to dormancy strategy
Cb MCMC successfully constrained most of the microbial parameters

related to the dormancy strategy, leading to the estimation of the pro-
portion of dormant biomass in the total microbial biomass near the root
(Fig. 6). Parameter constraint 4 specifies that the threshold substrate
concentration for the activation of microorganisms will be higher for
copiotrophs (Cthres,C) than for oligotrophs (Cthres,O) (Blagodatskaya et al.,
2009; Papp et al., 2020). The expected shifts based on these constraints
are visible in the parameters’ distributions (Fig. 3). An interesting result
is the significant shift to higher values in the posterior distributions of
Cthres,C (>0.01 mg

cm3) and Cthres,O (>0.004 mg
cm3) when process constraints are

applied (Fig. 3). Note that a higher Cthres,i indicates a higher substrate

concentration in the soil required for microorganisms to be in the active
state rather than dormant.
Process constraint 5 informs the model that the proportion of active

biomass to total biomass will be less than a threshold value based on
several experimental data (Table 7) (Blagodatskaya et al., 2009; Papp
et al., 2020). The effects of process constraints here are expected, and
the results are consistent with the fact that soil microorganisms are
mostly found in a dormant state (Blagodatskaya and Kuzyakov, 2013).
Parameter constraint 6 informs the model that reactivation (kr,O, kr,C)

is generally faster than deactivation (kd,O, kd,C) of microorganisms, in
addition to parameter constraint 7, which conditions the model pa-
rameters in a way that the rate of change in the microbial states (kr,O,

Fig. 2. Comparison of Posterior Model Parameter Distributions, fitted to the Kernel distribution, with Prior Log-Uniform Distributions within a Specified Interval for
microbial traits-related parameters. The parameters include growth rate (μmax,O,μmax,C), substrate affinity (kO,L,kC,L), maintenance rate (mmax,O,mmax,C), and growth
yield (YO,YC), presented from right to left for oligotrophs and copiotrophs. The blue curves depict the posterior parameter distributions after applying parameter
constraints. The green curves illustrate the parameter distributions after applying both parameter and process constraints. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Comparison of Posterior Model Parameter Distributions, fitted to the Kernel distribution, with Prior Log-Uniform Distributions within a Specified Interval for
dormancy traits-related parameters. The parameters include reduction factor in dormancy state (βO, βC), threshold substrate concentration for reactivation and
activation of microorganisms (Cthres,O, Cthres,C), deactivation rate coefficient (kd,O, kd,C), reactivation rate coefficient (kr,O, kr,C), presented from right to left for oli-
gotrophs and copiotrophs. The blue curves depict the posterior parameter distributions after applying parameter constraints. The green curves illustrate the
parameter distributions after applying both parameter and process constraints. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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kr,C, kd,O, kd,C) will be faster than the maximum growth rate (μmax,O;
μmax,C) (Blagodatskaya and Kuzyakov, 2013; Konopka, 1999; Salazar
et al., 2018). A resultant shift to higher values in the distribution of the
reactivation rate constant of the two functional groups (kr,O, kr,C) due to
these constraints was observed (Fig. 3). There was a slight shift to higher
values in the distribution of kd,C too when only parameter constraints
were applied; however, this shift reverted when process constraints were
applied. Cb MCMC also found that the reactivation rate constant for
copiotrophs (kr,C) is higher than oligotrophs (kr,O), indicating that under
favorable conditions copiotrophs can become active faster than oligo-
trophs. This result aligns with the more stable nature of oligotrophs
compared to copiotrophs, which grow faster with a shorter life
expectancy.
Certain parameters, such as the reduction factor in the dormant state

(βi), could not be improved, due to a lack of information regarding
parameter intercorrelations, as shown in the corresponding parameter
distributions. Only process constraints slightly shifted the βC towards
lower values. The parameter βi represents the reduction factor in the
maintenance requirements of microorganisms when they are in a
dormant state. More experimental data to set up additional constraints
regarding the dormant fractions of microorganisms in the rhizosphere is
needed to discern specific patterns (Hungate et al., 2015; Metze et al.,
2023).
Overall, the application of cb MCMC with the defined parameter and

process constraints reduced the parameter space significantly and esti-
mated the patterns for most of the microbial functional group-related
parameters. Parameter constraints alone were insufficient to estimate
the correct pattern for every parameter. Process constraints from
experimental evidence were crucial for estimating a corrector parameter
distribution. For some parameters, defining more constraints in light of
additional experimental evidence would enable to further confine the
parameter space.

3.1.3. Trade-offs
Parameter constraints 1 and 2 successfully induced a trade-off be-

tween substrate affinity (ki,L) and maximum growth rate (μmax,i) for two
microbial functional groups. The incorporation of process constraints,
grounded in experimental knowledge, narrowed down the parameter

space and clarified the functional classification (Fig. 4A).
Trade-off between the maintenance rate (mmax,i) and growth yield

(Yi) was reflected in the model through the parameter constraints 3 and
8 (Table 5). Process constraints resulted in a shift in the distribution of
oligotrophic parameters by constraining growth yield to higher values
and maintenance rate to lower values. In the parameters of the copio-
trophs, a slight shift towards lower maintenance rates was observed
(Fig. 4B).
Another microbial trade-off between growth yield (Yi) and the

threshold substrate concentration for the activation of microorganisms
(Cthres,i) was captured by the model through parameter constraints 4 and
8. Process constraints further shifted the distributions of Cthres,i to higher
values for both groups (Fig. 4C).
Similarly, parameter constraints 2 and 3 facilitated the trade-off

between substrate affinity (ki,S) and maintenance rate (mmax,i). The
trade-off between substrate affinity and maintenance rate was accen-
tuated in these functional groups when process constraints were applied,
aligning with predictions from ecological theory (Fig. 4D).
As a result of cb MCMC, ecological trade-offs between oligotrophs

and copiotrophs are well-reflected in the model’s parameterization.
While parameter constraints contribute to classify the two microbial
groups according to their functions by correlating microbial traits
through trade-offs, process constraints further emphasize this distinc-
tion. In this regard, process constraints are crucial for achieving more
specific patterns in the parameter distributions based on experimental
evidence, enhancing the model’s ability to accurately reflect microbial
physiology.

3.2. Simulation results based on conditioned model parameter sets

3.2.1. Concentration profiles
Accumulation of HMW-OC near the root was observed during the

first 9 d of root growth, due to rhizodeposition (Fig. 5A). Subsequently,
after 15 d from the initiation of rhizodeposition, a nearly homogeneous
distribution of HMW-OC was observed, with concentrations ranging
between 6 and 15 mg

cm3. Thereafter, no significant changes were noted in
the concentration profiles of HMW-OC, attributed to reaching
equilibrium.

Fig. 4. Scatter plots of the parameters that represent microbial traits which correlate with each other via trade-offs. Resulting parameter distributions are plotted
after only applying parameter constraints on top and after applying process constraints on bottom. Blue dots represent the parameter values for oligotrophs while red
dots stand for the parameter value for copiotrophs. A) Growth rate (μmax,i) versus substrate affinity (ki,L) B) Maintenance yield (Yi) versus maintenance rate (mmax,i) C)
Maintenance yield (Yi) versus threshold concentration for reactivation (Cthres,i) D) Substrate affinity (ki,L) versus maintenance rate of microorganisms (mmax,i). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The concentration of dissolved LMW-OC decreased with increasing
distance from the root surface, influenced by the rhizodeposition effect
of LMW-OC near the root surface (Fig. 5B). Simulated dissolved LMW-
OC concentrations reached up to 0.2 mg

cm3 at the root surface during the
initial 15 d of rhizodeposition. Thereafter dissolved LMW-OC at the root
surface decreased up to threefold due to microbial uptake. Even after
100 d of root growth, a detectable rhizosphere effect in dissolved LMW-
OC persisted. The sustained dissolved LMW-OC gradients after the
cessation of root exudation resulted from ongoing root water uptake and
the convective transport of dissolved LMW-OC from the soil to the root
surface as well as the organic C input from the root to the soil first 15 d.
The contribution of each parameter to the persistence of the rhizosphere
effect in LMW-OC was analyzed with performing sensitivity analysis in
section 3.3.1.
Rhizodeposition had a more pronounced effect on copiotrophic

biomass compared to oligotrophic biomass in the first 15 d (Fig. 5C and
D). However, spatial patterns of microbial abundance were observed in
both groups. Very close to the root surface (0–0.2 mm), both groups
exhibited a steep concentration profile.
The simulation periods were extended to 300 d to observe the

persistence in the spatial gradients of microbial functional groups.
Despite a slowdown in the increase of microbial biomass over time, the
spatial gradients of microbial biomass could still be observed after 300
d (Fig. 6). Microorganisms did not rapidly die off when the root stopped
releasing C due to their dormancy strategy. This dormancy strategy
helped microorganisms survive for an extended period and prevented

rapid consumption of the substrate, allowing active microorganisms to
grow for a longer period due to the prolonged availability of the
substrate.
The proportion of active biomass was highest near the root at the end

of rhizodeposition period. While most microorganisms near the root
surface were in an active state, the proportion of active biomass was less
than 5 percent at 0.6 mm from the root surface after 15 days of growth.
The proportion of active copiotrophic biomass decreased to less than 3
percent after 100 days, close to the root surface (<0.6 mm) and
decreased further afterwards (Fig. 6D).
On the other hand, oligotrophs remained more active near the root

than copiotrophs after 100 days. The proportion of active oligotrophic
biomass was less than 3 percent in the soil around the root after 300
days. Spatial gradients of the active biomass persisted longer for oligo-
trophs than for copiotrophs (Fig. 6C), consistent with the nature of oli-
gotrophs, which change their metabolic states more slowly than
copiotrophs, but can stay active in less favorable conditions, as stated in
the parametrization section.

3.2.2. Dynamics of microorganisms and carbon in rhizosphere and bulk soil
As a result of cb MCMCmethod, the concentration of HMW-OC in the

rhizosphere and bulk soil lies within the range of 7–14 mg cm− 3,
following a 1 mg cm− 3 increase in the upper bound of the prediction
band for the rhizosphere on the 9th day of rhizodeposition (Fig. 7). After
100 days of root growth, no significant difference was observed between
the concentrations of HMW-OC in the rhizosphere and bulk soil

Fig. 5. Concentration profiles of organic carbon and microbial biomass (in log scale) between 0 and 2 mm away from the root surface (no significant change was
observed beyond this distance) at 4 days, 8 days, 15 days, and 100 days after root starts to grow and release carbon. From top to bottom: A) High-molecular-weight
organic C compounds, B) dissolved low-molecular-weight organic C compounds, C) oligotrophic biomass, D) copiotrophic biomass. Prediction bands for simulated
outputs are depicted in grey (95%) for the fully constrained parameter sets.
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(Fig. 7A).
Dissolved LMW-OC reached its peak in the rhizosphere on the 15th

day of root growth. The substantial decrease in dissolved LMW-OC
concentration after 15 days, due to ending rhizodeposition, resulted in
a decrease of microbial growth, showing up as sharp decline in the
proportion of active microbial biomass in the rhizosphere (Fig. 7B–F).
On the 9th day of root growth, the peak of active oligotrophic

biomass originates from the ending HMW-OC input from the root. This is
so, because oligotrophs play a significant role in the breakdown of
HMW-OC (Fig. 7E and F).
Rhizodeposition had a more pronounced effect on total copiotrophs

than on oligotrophs, as seen in Fig. 7 (Fig. 7C and D). However, it had a
more pronounced effect on active oligotrophic biomass than on active
copiotrophic biomass. After 100 days, while copiotrophic biomass was
higher than oligotrophic biomass in the rhizosphere, the proportion of
active microbial biomass remained higher for oligotrophs than copio-
trophs (Fig. 7E and F). After 20 days, the proportion of active biomass to
the total biomass in the rhizosphere was less than 7% and 3% for oli-
gotrophs and copiotrophs, respectively. In the bulk soil, the proportion
of active microbial biomass did not differ significantly between the two
microbial groups; it was below 1.6% (Fig. 7E and F).

3.3. Sensitivity analysis

3.3.1. The long-term effect of rhizodeposition, diffusion and water flux on
OC and microbial biomass
Persistence in the spatial patterns of microorganisms was examined

by dividing the parameter sets into eight groups based on three key
parameters: rate of rhizodeposition, water flux, and diffusion coefficient
of dissolved LMW-OC. These parameters are expected to influence the

long-lasting spatial gradient of microorganisms and dissolved LMW-OC.
A prolonged rhizosphere effect (after 100 days) on dissolved LMW-

OC was observed under conditions of high rhizodeposition, low diffu-
sion, and high water flux (Fig. 8A). The stronger rhizosphere effect
observed under low water flux at day 15 was likely due to the contri-
bution of other parameters (e.g., related to microbial uptake or
dormancy) influencing the concentration differences. The enduring
rhizosphere effect on the microbial functional groups was evident under
conditions of high rhizodeposition (Fig. 8B and C), with copiotrophic
biomass near the root surpassing that of oligotrophic biomass.
Conversely, under conditions of low rhizodeposition, the concentration
difference between the root surface and bulk soil was similar and very
low for both oligotrophs and copiotrophs after rhizodeposition event.
The diffusion coefficient of dissolved LMW-OC emerged as the sec-

ond most influential parameter in sustaining the rhizosphere effect
(Fig. 8). In scenarios with low diffusion coefficients, a higher gradient of
microbial biomass was observed over 300 days. Microbial biomass
exhibited steeper concentration profiles over 300 days under conditions
of high water flux, facilitating substrate availability near the root
(Fig. 8B and C). Despite rhizodeposition ceasing, spatial patterns of both
functional groups persisted for 300 days, with the highest contribution
from the rhizodeposition rate, indicating the legacy effect of rhizode-
position on microorganisms.

3.3.2. The effect of rhizosphere extent on OC and microbial biomass
The impact of rhizosphere extent on the concentrations of organic C

and microbial functional groups was assessed by varying it between 0.5
mm and 2 mm.
HMW-OC did not exhibit significant differences after 20 days for

varying rhizosphere diameters, nor did they significantly affect

Fig. 6. Concentration profiles of microbial biomass and proportion of active microbial biomass of two functional groups (in log scale) between 0 and 0.6 mm away
from the root surface (no significant change was observed beyond this distance) at 15 days, 100 days, 200 days, and 300 days after root starts to grow and release
carbon. From top to bottom: A) Oligotrophs, B) copiotrophs, C) proportion of active oligotrophic biomass, D) proportion of active copiotrophic biomass. Prediction
bands for simulated outputs are depicted in grey (95%) for the fully constrained parameter sets.
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dissolved LMW-OC concentrations. However, we observed nearly a two-
fold difference in peak concentrations within the first 20 days
(Fig. 9A–B). The difference in microorganisms’ concentrations as a
function of rhizosphere diameter increased gradually over time
(Fig. 9C–D). Specifically, the difference of oligotroph concentrations as a
function of rhizosphere diameter was up to two-fold (Fig. 9C), whereas
for copiotrophs it was approximately up to 1.5-fold (Fig. 9D).
Therefore, rhizosphere extent significantly impacts the concentra-

tion of organic C in the rhizosphere during rhizodeposition events, while
microbial biomass remains relatively unchanged by varying rhizosphere
extent during these events. Conversely, there is no significant impact of
rhizosphere extent on organic C after root cessation, unlike microbial
biomass, which can significantly change with varying rhizosphere
extent.

4. Discussion

Robust predictions of microbial responses to substrate input in the
rhizosphere can be achieved with process-based models that parame-
terize microbial life history strategies based on functional microbial
traits and their relationships but are currently limited to individual
bacterial strains isolated from rhizosphere soils where a sequenced
genome is available (Marschmann et al., 2024). Modeling spatiotem-
poral patterns of microorganisms and C turnover in the rhizosphere
remains thus challenging but is highly relevant to improve the under-
standing of root-soil interactions and C stabilization mechanisms. While
it is still under debate which microbe-based ecological strategies are best
suited for predicting the response of microbial communities to envi-
ronmental changes (Treseder, 2023), there is robust experimental evi-
dence on a bimodal life history strategy that distinguishes between
copiotrophs and oligotrophs in the rhizosphere (Ling et al., 2022; López

et al., 2023). We therefore integrated a trait-based approach to reflect
copiotrophs and oligotrophs in the process-based rhizosphere model
TraiRhizo. Model simulations with TraiRhizo enabled to analyse the
impact of rhizodeposition on spatiotemporal patterns of microorganisms
with distinct responses to varying substrate supply and the associated
decomposition and stabilization of organic C in the rhizosphere.

4.1. Prospects and limits of constraint-based parameter sampling for
predicting rhizosphere processes

Constraint-based model conditioning with cb MCMC leveraged
published experimental evidence and theory to constrain the parameter
space of the TraiRhizo model. Parameter constraints limit the parameter
space by specifying valid parameter bounds and relationships between
parameters. Process constraints limit the parameter space by ensuring
that simulated spatiotemporal patterns of microbial biomass and organic
C in the rhizosphere and bulk soil are in accordance with experimentally
observed patterns. Typically, using a single experimental dataset for
model calibration often limits the transferability of the model parame-
terization to other soil and situations (Scott et al., 1995; Sung et al.,
2006; Zelenev et al., 2006). However, by employing cb MCMC, we can
holistically integrate informative data from many studies to formulate
the constraints. While the predictions are uncertain, cb MCMC provides
parameter spaces that allow for robust forecasts and scenario
simulations.
The cb MCMC approach is valuable for narrowing down the

parameter space by specifying valid parameter bounds and relationships
between parameters. It can also be combined with Bayesian calibration
to specific experiments to further constrain the parameter space and
reduce the uncertainty of model predictions for soil-plant systems. This
could be achieved by formulating a combined likelihood function, which
would replace the current likelihood function used in the cb MCMC al-
gorithm. By integrating these two approaches, we can enhance the ac-
curacy and reliability of model predictions for specific soil-plant systems
(Zamora-Sillero et al., 2011).

4.2. Insights from modeling on spatiotemporal patterns of microbial
succession and SOM cycling in the rhizosphere

The model predictions reveal the significant impact of rhizodeposi-
tion on the distribution of organic C, microbial biomass, and the pro-
portion of microbial functional groups in the rhizosphere.
Rhizodeposition had a more pronounced effect on copiotrophs than
oligotrophs, resulting in the dominance of copiotrophs near the root
surface where C inputs are high. This outcome aligns with experimental
studies showing that bacterial diversity diminishes with increased sub-
strate availability (Ling et al., 2022). However, an opposite effect of
rhizodeposition was observed on the active fraction of microbial func-
tional groups. The proportion of active microbial biomass in the rhizo-
sphere remained higher for oligotrophs than for copiotrophs, due to the
lower threshold substrate concentration required for the activation of
oligotrophs (Cthres,O). Since oligotrophs play an active role in degrading
HMW-OC to LMW-OC, this mechanism led to sustain dissolved
LMW-OC, a directly available substrate for microbes, up to 300 days
(until the end of simulations) in the rhizosphere.
Another interesting mechanism captured by our model was the

steady increase after the rhizodeposition period in the total microbial
biomass (active + dormant microbial biomass) up to 300 days in the
rhizosphere. This was explained by the dormancy strategy of microor-
ganisms. Most microorganisms transitioned to a dormant metabolic
state immediately after rhizodeposition ceased. This dormancy strategy
prevents microorganisms from dying off quickly and prevents rapid
consumption of the substrate, allowing active microorganisms to grow
for an extended period due to the prolonged availability of the substrate.
Additionally, we observed steep gradients in the abundance of two

microbial groups within 0–0.2 mm from the root surface especially

Fig. 7. Temporal changes in A) high-molecular-weight organic C compounds,
B) dissolved low-molecular-weight organic C compounds, C) oligotrophic
biomass, D) copiotrophic biomass, E) proportion of oligotrophic active biomass
to total oligotrophic biomass, and F) proportion of copiotrophic active biomass
to total copiotrophic biomass for 100 days, averaged over: 0–2 mm away from
the root surface for the rhizosphere, and further away than 2 mm for the bulk
soil. The 95% confidence interval for the concentration values in soil (including
rhizosphere and bulk soil) is depicted by the dark blue area, while the 95%
confidence interval for the concentration values in rhizosphere is represented
by the light blue region. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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under high rhizodeposition conditions, which highlights the importance
of resolving soil properties and states at sub-millimeter resolution. The
conditioning and the robust quantification of microbial C utilization in
the rhizosphere would thus benefit from leveraging spatially resolved
soil sampling imaging methods around individual roots.

4.3. Impact of rhizosphere extent on concentration differences

In general, experimental investigators have equated the rhizosphere
with the soil adhering after physically shaking the root (Chen et al.,
2015; Yang et al., 2013). In contrast to this somewhat heuristic view,
mathematical modelers have employed different definitions of the
rhizosphere (Darrah, 1991; Landl et al., 2021a; Raynaud, 2010). Un-
fortunately, there is currently no standard definition agreed upon be-
tween modelers and experimenters. In this study, we made a pragmatic
choice for the rhizosphere extent of 2 mm to align with the experiments
used in defining the constraints. This value was also used to differentiate
between rhizosphere soil and bulk soil when calculating the dynamics of
C pools and microbial biomass in Fig. 7. Consequently, we conducted an
analysis with varying rhizosphere extents to understand the effect of
rhizosphere extent on the temporal patterns of C pools and microbial
biomass.
Our analysis indicated that variations in rhizosphere extent, ranging

from 0.5 to 2 mm, have significant effects on C pools, particularly during
periods of rhizodeposition and significant effects on the microbial C
pools after the rhizodeposition. This highlights the importance of
incorporating the spatial variation of concentrations into rhizosphere
modeling to ensure accurate predictions of nutrient dynamics. Thus, it is
important to consistently define the soil- and plant-specific spatial

Fig. 8. Concentration differences between root surface and bulk soil for A) dissolved low-molecular-weight organic C compounds (dissolved LMW-OC), B) oligo-
trophs, and C) copiotrophs at 15 days, 100 days, 200 days, and 300 days after root initiation. Parameter sets are categorized based on the rate of rhizodeposition,
water flux, and diffusion coefficient of dissolved low-molecular-weight organic C compounds.

Fig. 9. Temporal dynamics of concentration differences between rhizosphere
and bulk soil for A) high-molecular-weight organic C compounds (HMW-OC),
B) dissolved low-molecular-weight organic C compounds (dissolved LMW-OC),
C) oligotrophs, and D) copiotrophs for three different rhizosphere extent.
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extent of the rhizosphere for simulations and experiments on root zone
dynamics.

4.4. Legacy effects of rhizodeposition on microorganisms

Our simulations revealed the persistence of spatial patterns of mi-
crobial functional groups even after the cessation of root exudation. This
legacy effect of rhizodeposition on microbial communities underscores
the long-term impact of plant roots on soil microbial dynamics in line
with experimental evidence (Hannula et al., 2021; Schmid et al., 2021).
The legacy effect was observable for 300 days under high rhizodeposi-
tion conditions. Interestingly, oligotrophs exhibited a longer-lasting
legacy effect compared to copiotrophs, consistent with their ability to
maintain active states for extended periods under nutrient-poor condi-
tions. This could positively affect subsequent root development since
oligotrophs play a crucial role in nutrient cycling through mineraliza-
tion, providing nutrients directly available to plant roots and supporting
growth (Bledsoe et al., 2020; Villalobos-Vega et al., 2011). Additionally,
oligotrophs’ high growth yield traits might reduce microbial-plant
nutrient competition due to less nutrient uptake by microorganisms
during the plant’s growing stage, facilitating nutrient uptake by plant
roots (Fierer et al., 2007; Zelenev et al., 2006). However, our model does
not address the impact of rhizodeposition legacy on the subsequent root
growth. This could be investigated by using coupled trait-based rhizo-
sphere models with root structural models that account for nutrient
cycling at the root system scale, as discussed in section 4.5 (Schnepf
et al., 2018). Enhancing our knowledge at the plant scale could enable
the design of root architectures that increase sustainability and yield
(Nannipieri et al., 2023).

4.5. Conclusions and outlook

The applied constraint-based model conditioning closely links recent
rhizosphere modelling approaches with the existing experimental find-
ings. Parameter and process constraints were set based on ecological
theory and a comprehensive literature analysis to ensure solid
grounding. This workflow provides a systematic approach to integrate
informative data from upcoming elaborate experiments, which are
needed to increase the currently limited empirical evidence in rhizo-
sphere ecology. Our findings demonstrate that rhizodeposition signifi-
cantly influences the spatiotemporal distribution of microbial functional
groups, with oligotrophs showing a longer-lasting legacy effect
compared to copiotrophs. This could have important implications for
nutrient cycling and subsequent root development due to the role of
microbial functional groups in soil health and plant growth.
Further research should focus on the effects of varying soil condi-

tions, such as soil moisture and pH, on microbial community dynamics
in the rhizosphere. Combining model simulations with empirical data
from field studies will provide a more comprehensive understanding of
these interactions. Additionally, investigating the impact of rhizodepo-
sition legacy on subsequent root growth through coupled trait-based
rhizosphere models with root structural models will be crucial for
designing sustainable root architectures.
Our future goal is to implement a three-dimensional coupling of the

TraiRhizo model with the structural-functional plant model CPlantBox
(Giraud et al., 2023). This integration will allow for a deeper under-
standing of plant-microbe interactions, ecosystem functioning, and the
feedbacks between root growth and rhizosphere processes.
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