001     1035328
005     20250203133239.0
024 7 _ |a 10.1515/cdbme-2024-2059
|2 doi
024 7 _ |a 10.34734/FZJ-2025-00382
|2 datacite_doi
037 _ _ |a FZJ-2025-00382
082 _ _ |a 570
100 1 _ |a Fonck, Simon
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Robustness of a DenseNet-121 for the Classification of ARDS in Chest X-Rays
260 _ _ |a Berlin
|c 2024
|b De Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736780128_16364
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Research in the field of artificial intelligence (AI) in medicine is increasingly relying on algorithms based on deep learning (DL), especially for radiology. Despite producing promising results, DL models have a major drawback: their reliance on large training datasets. Especially in medicine, large, annotated datasets are hard to obtain, leading to low robustness and a performance loss when exposed to unseen, new data. To address this problem, our research evaluates how well data augmentation is able to expand the used dataset and thus improve a DL model. We employ 17 different augmentation methods to test the robustness of a DenseNet-121 trained to classify Acute Respiratory Distress Syndrome (ARDS) in chest X-rays. Our experiments show that while the model has low robustness for augmented test data when trained on unaugmented data, the general performance for ARDS classification can be improved by augmenting the training data. Overall, this demonstrates that data augmentation is beneficial in training AI models for ARDS classification in order to create more robust and generalizable models.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SDI-S - SDI-S: Smart Data Innovation Services - Experimentelle Erprobung und Entwicklung von KI-Dienstverbünden für Innovationen auf industriellen Daten (01IS22095D)
|0 G:(BMBF)01IS22095D
|c 01IS22095D
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fritsch, Sebastian
|0 P:(DE-Juel1)185651
|b 1
|u fzj
700 1 _ |a Nguyen, Alina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kowalewski, Stefan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stollenwerk, André
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1515/cdbme-2024-2059
|g Vol. 10, no. 4, p. 244 - 247
|0 PERI:(DE-600)2835398-5
|n 4
|p 244 - 247
|t Current directions in biomedical engineering
|v 10
|y 2024
|x 2364-5504
856 4 _ |u https://juser.fz-juelich.de/record/1035328/files/Robustness%20of%20a%20DenseNet-121%20for%20the%20Classification%20of%20ARDS%20in%20Chest%20X-Rays.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1035328
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185651
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:39:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:39:59Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:39:59Z
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)CASA-20230315
|k CASA
|l Center for Advanced Simulation and Analytics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)CASA-20230315
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21