Hauptseite > Publikationsdatenbank > Robustness of a DenseNet-121 for the Classification of ARDS in Chest X-Rays > print |
001 | 1035328 | ||
005 | 20250203133239.0 | ||
024 | 7 | _ | |a 10.1515/cdbme-2024-2059 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-00382 |2 datacite_doi |
037 | _ | _ | |a FZJ-2025-00382 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Fonck, Simon |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Robustness of a DenseNet-121 for the Classification of ARDS in Chest X-Rays |
260 | _ | _ | |a Berlin |c 2024 |b De Gruyter |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736780128_16364 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Research in the field of artificial intelligence (AI) in medicine is increasingly relying on algorithms based on deep learning (DL), especially for radiology. Despite producing promising results, DL models have a major drawback: their reliance on large training datasets. Especially in medicine, large, annotated datasets are hard to obtain, leading to low robustness and a performance loss when exposed to unseen, new data. To address this problem, our research evaluates how well data augmentation is able to expand the used dataset and thus improve a DL model. We employ 17 different augmentation methods to test the robustness of a DenseNet-121 trained to classify Acute Respiratory Distress Syndrome (ARDS) in chest X-rays. Our experiments show that while the model has low robustness for augmented test data when trained on unaugmented data, the general performance for ARDS classification can be improved by augmenting the training data. Overall, this demonstrates that data augmentation is beneficial in training AI models for ARDS classification in order to create more robust and generalizable models. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a SDI-S - SDI-S: Smart Data Innovation Services - Experimentelle Erprobung und Entwicklung von KI-Dienstverbünden für Innovationen auf industriellen Daten (01IS22095D) |0 G:(BMBF)01IS22095D |c 01IS22095D |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Fritsch, Sebastian |0 P:(DE-Juel1)185651 |b 1 |u fzj |
700 | 1 | _ | |a Nguyen, Alina |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kowalewski, Stefan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Stollenwerk, André |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1515/cdbme-2024-2059 |g Vol. 10, no. 4, p. 244 - 247 |0 PERI:(DE-600)2835398-5 |n 4 |p 244 - 247 |t Current directions in biomedical engineering |v 10 |y 2024 |x 2364-5504 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1035328/files/Robustness%20of%20a%20DenseNet-121%20for%20the%20Classification%20of%20ARDS%20in%20Chest%20X-Rays.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1035328 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)185651 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:39:59Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:39:59Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:39:59Z |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)CASA-20230315 |k CASA |l Center for Advanced Simulation and Analytics |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)CASA-20230315 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|