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Abstract: Research in the field of artificial intelligence (AI)
in medicine is increasingly relying on algorithms based on
deep learning (DL), especially for radiology. Despite produc-
ing promising results, DL models have a major drawback: their
reliance on large training datasets. Especially in medicine,
large, annotated datasets are hard to obtain, leading to low
robustness and a performance loss when exposed to unseen,
new data. To address this problem, our research evaluates how
well data augmentation is able to expand the used dataset and
thus improve a DL model. We employ 17 different augmenta-
tion methods to test the robustness of a DenseNet-121 trained
to classify Acute Respiratory Distress Syndrome (ARDS) in
chest X-rays. Our experiments show that while the model has
low robustness for augmented test data when trained on unaug-
mented data, the general performance for ARDS classification
can be improved by augmenting the training data. Overall, this
demonstrates that data augmentation is beneficial in training
Al models for ARDS classification in order to create more ro-
bust and generalizable models.

Keywords: Deep Learning, Data Augmentation, Medical
Application, Robustness, Artificial Intelligence

1 Introduction

Acute Respiratory Distress Syndrome (ARDS) is a lung in-
jury characterized by a sudden and severe inflammatory re-
sponse in the alveoli leading to severe impairment of alve-
olar gas exchange and consequently hypoxemia. It was first
described by Ashbaugh et al. in 1967 and has since been a
frequent topic in research [1, 2]. In 2012, the Berlin Defini-
tion (BD) has been established as a standard for the diagnosis
of ARDS. The BD specifies four criteria that must be met for
ARDS [3]. In 2016, Bellani et al. discovered in their LUNG
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SAFE study, that around 10.4 % of all mechanically ventilated
ICU patients suffer from ARDS, with a hospital mortality of
40 % [4]. One of the reasons for the high mortality rate is the
often too late or missed diagnosis [5]. To support physicians
in diagnosing ARDS, artificial intelligence (AI) methods have
been published in recent years [6]. They can support physi-
cians in determining the BD criteria and therefore improve
the diagnosis. In particular, deep learning (DL) models, like
convolutional neural networks (CNN), are used to support the
ARDS classification in image data, which is a time-consuming
task typically done by a radiologist [7, 8]. But as useful as they
are, DL models have one drawback, which is “their lack of
generalisability and tendency to overfit when presented with
small training sets” [9]. Since there are only a few publicly
available datasets in the medical field, due to the sensitivity
of medical data and protection of the patient’s privacy, the
training dataset is often small. Thus, resulting models lack ro-
bustness and transferability [10]. To overcome this problem,
data augmentation can be used to expand and generalize the
dataset and thus prevent overfitting [11]. In their review, Chlap
et al. present data augmentation techniques ranging from ba-
sic methods (such as rotation) to deformation and DL-based
methods (such as generative adversarial networks) [11]. In our
research we incorporated basic data augmentation techniques
to evaluate the robustness of a DenseNet-121 for the classifi-
cation of ARDS in chest X-rays [8].

2 Design & Concept
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Fig. 1: Workflow for the training and evaluating of the robustness
of a DL model.

In our experiments, we evaluate a DenseNet-121 using vari-
ous augmentation techniques, that are suited for medical image
data [11]. The model is trained using a transfer-learning pro-
cess from pneumonia to ARDS, analog to the one presented in
Fonck et al. [8]. First, we selected datasets for the training on
pneumonia and a dataset for the fine-tuning on ARDS. After-
wards, the ARDS data is segregated in training and test data,
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which can then be augmented. With the according data the
model is fine-tuned and finally evaluated using performance
metrics. The process is depicted in Figure 1.

2.1 Data Selection

For our study, we used three publicly available databases:
CheXpert [12] and a dataset by Kermany et al. [13] for the pre-
training on pneumonia and MIMIC-CXR for the training on
ARDS [14]. CheXpert contains 224,316 chest radiographs of
65,240 patients labelled for 14 different common chest radio-
graphic observations (4,684 labeled for pneumonia and 17,000
with no findings) [12]. The dataset published by Kermany et
al. contains 5,233 images, where 3,883 are labeled as pneumo-
nia and 1,350 as normal [13]. The radiographs were taken of
pediatric patients of one to five years old. Here, it is important
to take the physical differences of adults and children into ac-
count. However, this fact may contribute to a more robust and
generalizable DL model. Lastly, the MIMIC-CXR is a dataset
containing 337,110 radiographs from 227,827 patients, which
are also labeled for the 14 observations [14]. The database is
published by the PhysioNet [15]. None of the three databases
contain labels for the classification of ARDS. Therefore, we
extracted 533 images from the MIMIC-CXR dataset based on
the noteevents in the MIMIC-IV database, that was manually
screened and annotated by a radiologist of the University Hos-
pital RWTH Aachen for the presence of ARDS. In addition,
the radiologist indicated (un)certainty for specific images. Ac-
cording to his (un)certainty level we weight the dataset by
including ARDS images that the radiologist was (very) cer-
tain about up to four times in the training dataset. For the pre-
training of the DL model we used two sets of the pneumonia
labeled radiographs: a subset of 1,000 images (687 normal and
313 pneumonia) for initial testing and the combined dataset for
further evaluation. For the fine-tuning on ARDS, we used the
weighted dataset (see Table 1).

Tab. 1: Datasets that are used for the pneumonia training and
fine-tuning for ARDS.

Pneumonia No Findings
CheXpert | Kermany | CheXpert | Kermany
Combined 4,684 3,883 17,000 1,350
Subset 313 687
ARDS No ARDS
Unweighted 163 370
Weighted 446 370

2.2 Data Segregation & Augmentation

After the training of the DL model on pneumonia, the
weighted ARDS dataset is divided into a training (77 %) and
a test dataset (23 %). The training data is used to fine-tune
the DL model to ARDS. The test dataset is then used to evalu-
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ate the models. It is important that the data augmentation takes
place after the segregation, as otherwise the same image, albeit
augmented, is in the training and test dataset and a sound eval-
uation of the model is no longer possible. In the data augmen-
tation step, we focused on methods, that according to a radiol-
ogist of the University Hospital Aachen may occur when us-
ing different X-ray settings or machines, like geometric shifts
or changes in the intensity [11]. Overall, we tested 17 differ-
ent data augmentation techniques. The overview of all used
augmentation techniques can be seen in Figure 2.
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Fig. 2: Different data augmentation techniques that were used for
our experiments including an example.

The augmentation is optional for the training and/or test data
to evaluate various scenarios. In the first mode (M1), we eval-
uated the models, that are fine-tuned with unaugmented data
and tested them on an unaugmented test set. In the second
mode (M2), we augmented the test data to evaluate how the
performance of the models may change due to the new, unseen
data properties. In the third mode (M3), we just augmented the
training set and tested the model with unaugmented data, to de-
termine, whether augmented training reduces the performance
compared to the normal training. In the fourth (M4), we aug-
mented the training and test data. The four modes are depicted

in Figure 3.
Mode 1 Mode 2 Mode 3 Mode 4
[ Training data D Test data
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Fig. 3: Four modes to evaluate the robustness of DL models.

2.3 Model Training & Evaluation

In our experiments we used various (augmented) training data
and (augmented) test data allocations to train a model in four
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different modes to detect ARDS in Chest X-rays, as depicted
in Figure 1 and Figure 3. First, we pre-trained the models on
pneumonia using the subset from the combined dataset to re-
duce the computational cost. Afterwards, we tested all aug-
mentation techniques individually using the weighted dataset
for ARDS. Subsequently, we selected 5 different augmentation
techniques to analyze the overall impact of the methods on the
training process. Therefore, we used the combined dataset for
pre-training (see Table 1) and all augmentation methods con-
currently. Overall, we had 55 training runs for the different
modes and techniques. We evaluated the model using metrics
such as accuracy, area under the receiver operating character-
istics (AUROC) curve and F1-Score.

3 Resulis

The results of our experiments of evaluating the robustness
of the DenseNet-121 for classification of ARDS in chest X-
rays for the different training modes (see Figure 3) can be
seen in Table 2. Overall, we can see that the performance of
the model decreases in comparison to M1 when augmenting
the test datasets (see M2), which indicates a low robustness of
the trained models. For some augmentation methods however,
the performance does not change (significantly), like p.e. Blur,
Histogram Equalization or Sharpen. For others, like Color In-
vert, Dropout and Segmentation it decreases considerably. The
metrics for M4 show, that except for Segmentation, all mod-
els adapt to the augmentation and perform better on the aug-
mented test data. When training with augmented data (M3),
no significant loss of performance was observed in the unaug-
mented test dataset (see Table 2). Based on the results in Table
2, we selected five techniques to analyze their combined in-
fluence on the training process. For this purpose, we focused
on the methods that led to a performance loss in M2, which
could be improved by augmenting the training data in M4.
In particular, we focused on methods that change the inten-

sity of the images or filtering methods. In the end, we used
the following five methods: Color Invert, Color Jitter, Emboss,
Gamma Contrast and Fog. These five methods are evaluated
using the whole combined dataset for pneumonia training and
the weighted dataset for ARDS (see Table 1), on which all aug-
mentation techniques were applied. The results can be seen in
Table 3. These show that the augmentation of the training data
leads to better results for the unaugmented test data (see M3)
and generally to better results (see M4). It can be seen that
unaugmented training leads to less robust models (see M2).

Tab. 3: Resulting metrics for the DenseNet-121 using the resulting
five augmentation methods on the data.

Accuracy | AUROC | F1-Score
Mode 1 0.960 0.940 0.926
Mode 2 0.891 0.862 0.783
Mode 3 0.990 0.982 0.981
Mode 4 0.982 0.969 0.966

4 Discussion

Although our results show that some augmentation techniques
led to a performance loss when only applied to test data (see
Table 2), we found that data augmentation can improve the ro-
bustness of the model, when also used on the training data.
This can be inferred from the comparison of M3 and M4 with
M2. In our experiment, we included mainly intensity aug-
mentations to simulate the differences in X-ray machines and
showed that they were able to improve the model’s robustness
(see Table 3). Contrary to our initial impression that techniques
such as Sharpen, Blur and Rotation are suitable for medically
misrecorded radiographs, they did not provide significant im-
provement (M4) but also no deterioration compared to no aug-
mentation. After observing the provided image data, it be-
comes apparent, that the training dataset already includes ro-
tated, blurred and sharpened images. Therefore, unaugmented

Tab. 2: Results of the 17 Data Augmentation techniques for the different modes (M1 - M4) (see Figure 3). The orange-colored methods
were selected for further evaluation of the model with concurrent application on the ARDS training data.
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z M2 [ 0990 0.921 0.624 0.861 0.743 0.792 0.980 0.891 0.960 0.951 0.753 0.931 0.871 0.533 0.951 0.891 0.891
% 0.990 M3 | 0.980 0.960 0.990 0.980 0.990 0.970 0.960 0.970 0.960 0.960 0.970 0.960 0.980 0.941 0.970 0.970 0.960
:
< M4 [ 0990 0.951 0.960 0.911 0.871 0.980 0.970 0.931 0.980 0.970 0.891 0.941 0.901 0.767 0.951 0.951 0.911
o M2 | 0.982 0.905 0.631 0.816 0.683 0.745 0.964 0.855 0.933 0.931 0.714 0.925 0.926 0.381 0.919 0.879 0.868
% 0.982 M3 | 0974 0961 0.981 0.987 0.993 0.980 0.973 0.967 0.948 0.973 0.980 0.973 0.987 0.935 0.980 0.980 0.973
< M4 | 0.982 0919 0.940 0.871 0.833 0.964 0.948 0.894 0.964 0.948 0.850 0.915 0.860 0.411 0.919 0.919 0.896
o M2 | 0981 0.840 0.513 0.741 0.567 0.667 0.963 0.793 0.929 0.906 0.627 0.857 0.667 0.000 0.912 0.766 0.776
u% 0.981 M3 | 0.962 0.926 0.980 0.963 0.981 0.946 0.929 0.943 0.923 0.929 0.946 0.929 0.963 0.889 0.946 0.946 0.929
b M4 | 0981 0.912 0.926 0.848 0.800 0.963 0.946 0.881 0.963 0.946 0.820 0.889 0.833 0.000 0.912 0.912 0.816
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training recognizes the pattern before augmenting.
Limitations: We only focused on basic data augmentation
techniques, not considering generative augmentation methods
or combining techniques in one image, which could also be
beneficial in clinical environment. Thus, in future work, other
techniques should be explored and evaluated to improve the
robustness of deep learning models for the identification of
ARDS in chest X-rays even further. In addition, it should be
evaluated in cooperation with radiologists whether the aug-
mented images still reflect clinical reality. Furthermore, due to
computational costs required, we just included five different
augmentation methods in our combined analysis. More con-
current methods and other combinations could be analyzed in
future research. In addition, the dataset used for ARDS classi-
fication is relatively small. Although this was one of the mo-
tivations for our research, a larger dataset may further support
and improve the results. In order to further test the generaliz-
ability of DL models, external data should be included, which
unfortunately were not available at the time of this study.

5 Conclusions

In this research, we evaluated the robustness of DenseNet-121
when exposed to new and unseen data. Initially, we used 17
different augmentation techniques to test how they affect the
performance of the models on augmented test data in different
modes. Afterwards, we compared the performance when aug-
menting the training data to see how well we can improve the
robustness by incorporating data augmentation in the training
process. Overall, we could show, that the model had poor re-
sults on the augmented data, indicating, that they generalize
poorly to unknown data. Furthermore, we were able to show
that the augmentation of the training data does not have a
major impact on the overall performance of a model, which
implies that data augmentation has no direct drawbacks and
can be included to improve robustness and enlarge the training
data. We conclude that data augmentation is beneficial, when
facing small amount of training data for CNN models, that
may be used in a clinical setting.
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