001     1035348
005     20250203103434.0
037 _ _ |a FZJ-2025-00395
041 _ _ |a English
100 1 _ |a He, Fang
|0 P:(DE-Juel1)164665
|b 0
|e Corresponding author
111 2 _ |a European Horticulture Congress
|g EHC2024
|c Bucharest
|d 2024-05-12 - 2024-05-16
|w Romania
245 _ _ |a Smart monitoring of the Arnica flower development for better harvest times
260 _ _ |c 2024
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1736934945_21562
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a In biogenic value creation, medicinal plants are playing an important role including thecommercial cultivation to meet the growing global demand. This opens up newopportunities to improve harvest quantities through breeding, cultivation managementand harvesting techniques. An important aspect is the determination of optimal harvesttimes, which depend on the weather conditions, the state of the plant organ with regardto the harvesting process and the content of the active ingredients, which fluctuates overtime. In this study, we used the medicinal plant Arnica montana “Arbo” to examine theaspect of target compound yield of helenalin, dihydrohelenalin and their estersdepending on the life cycle of the flower, in order to develop methods for estimatingoptimal harvest time windows. A neural network was trained to classify seven stagesfrom time-lapse images in order to track the development of each flower stage. To gettypical content values, arnica plants were grown in the field and amounts of the two targetcompound classes were determined for each flower type. By combining both outcomes,it was possible to calculate the time course of the total amount of active compounds andthereby determine better harvest time windows. This method is interesting also for othercrops where external features can be used as a proxy for active compoundconcentrations.
536 _ _ |a 2A6 - Bioeconomy (CARF - CCA) (POF4-2A6)
|0 G:(DE-HGF)POF4-2A6
|c POF4-2A6
|f POF IV
|x 0
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 1
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Müller-Linow, Mark
|0 P:(DE-Juel1)142555
|b 1
700 1 _ |a Kuhn, Arnd Jürgen
|0 P:(DE-Juel1)129349
|b 2
909 C O |o oai:juser.fz-juelich.de:1035348
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164665
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142555
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129349
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l COOPERATION ACROSS RESEARCH FIELDS (CARFs)
|1 G:(DE-HGF)POF4-2A0
|0 G:(DE-HGF)POF4-2A6
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Bioeconomy (CARF - CCA)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21