

Equivariant Representation Learning for Augmentation-based Self-Supervised Learning via Image Reconstruction

Qin Wang Kai Krajsek Hanno Scharr

IAS-8: Data Analytics and Machine Learning, Forschungszentrum Jülich, Germany Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Germany {qi.wang, k.krajsek, h.scharr}@fz-juelich.de

Motivation

Invariance

Equivariance

Figure 1. Commutative diagram for invariance and equivariance. Retrieved from *Equivariant and Coordinate Independent Convolutional Networks*[1], (p. v), by Maurice Weiler, 2023.

Equivariance in feature learning ensures that a model's learned representations remain consistent under various transformations, including 2D or 3D translations, rotations, scaling, and changes in color or illumination

Current state-of-the-art method that introduce equivariance to SSL, SIE

- has been tested only on small, artificial datasets (3DIEBench), limiting its proven applicability to real-world scenarios.
- It requires prior knowledge of transformations to learn equivariant features, which may not always be available or easily determinable.
- It struggles when dealing with images that have undergone unknown transformations.

Contribution

- We introduce reconstruction as an auxiliary task to learn equivariance, addressing the limitations of augmentation-based self-supervised learning.
- We demonstrate the effectiveness of our method on both artificial (3DIEBench) and natural (ImageNet) datasets, showing comparable (3DIEBench) and improved performance (ImageNet) compared to existing baselines.
- We provide extensive evaluations on various image transformations, including rotation, color jittering, translation, and scaling, demonstrating the robustness of our learned representations.

Method

Split Invariant and Equivariant Representations

Cross-Attention Reconstruction

- The framework divides the representations extracted from the encoder into two parts: one invariant and the other equivariant. The invariant part uses augmentation-based SSL loss to encourage the network to learn invariant features.
- To facilitate the learning of equivariant features from the images, we introduce an auxiliary reconstruction task. The reconstruction is performed using a decoder, **d**, which consists of a cross-attention layer followed by **L** self-attention layers.

Experimental Results

Evaluation on 3DIEBench dataset.

3DIEBench	Classification	Rotation Prediction	Color Prediction
SIE(rot)	0.820	0.724	0.054
SIE(rot+color)	0.809	0.502	0.980
Ours	0.782	<u>0.554</u>	0.954

Our model strikes a balance, performing well across all tasks.

Evaluation on CIFAR10 dataset.

Cifar10	Rot Prediction	Color Prediction	Blur Radius	Trans Prediction
SIE(rot)	0.989	0.887	0.836	0.911
SIE(color)	0.813	0.921	0.825	0.822
SIE(blur)	0.814	0.833	0.990	0.807
SIE(trans)	0.876	0.812	0.810	0.987
SIE(all)	0.845	0.864	0.889	0.886
Ours	0.826	0.906	0.972	0.890

Evaluation on ImageNet.

ImageNet	Rotation	Color	Blur radius	Translation	Crop prediction	Flip
SIE(rot)	0.990	0.867	0.042	0.540	0.266	0.532
SIE(color)	0.078	0.890	0.097	0.355	0.178	0.333
SIE(blur)	0.153	0.883	0.941	0.189	0.412	0.415
SIE(trans)	0.213	0.885	0.023	0.978	0.368	0.511
SIE(crop)	0.273	0.819	0.018	0.450	0.922	0.485
SIE(flip)	0.155	0.798	0.056	0.312	0.266	0.993
VICReg 4	0.318 ± 0.005	0.804 ± 0.016	0.101 ± 0.023	0.333 ± 0.008	0.423 ± 0.140	0.872 ± 0.070
SIE(all)	0.331 ± 0.007	0.899 ± 0.003	0.211 ± 0.005	0.925 ± 0.002	0.835 ± 0.008	0.945 ± 0.004
SIE(all, single each time)	0.435 ± 0.011	0.907 ± 0.009	0.377 ± 0.004	$\overline{0.922 \pm 0.010}$	0.829 ± 0.005	0.939 ± 0.007
Ours	0.862 ± 0.004	$\textbf{0.921} \pm \textbf{0.006}$	0.823 ± 0.003	0.853 ± 0.005	0.912 ± 0.002	0.952 ± 0.008

- SIE models excel when pretrained with specific single transformations; their performance drops significantly for other transformations.
- Pretraining with randomly selected transformations (as in SIE (all, single each time)) improves results compared to SIE(all).
- Our models can handle unknown transformations better than SIE.

Transfer Learning Results

Transfer learning on classification and segmentation downstream tasks.

Methods	Cifar10 13	Cifar100 [13]	Food101 [14]	SUN397 15	DTD [16]	Pets 17	Aircraft [18]
SIE(rot)	71.56	46.88	55.48	43.11	64.22	81.51	50.21
SIE(color)	67.99	48.78	57.19	42.32	60.87	80.27	41.15
SIE(crop)	80.84	49.35	59.24	52.38	61.82	84.63	47.35
Supervised	80.99	50.66	59.32	52.98	62.03	83.59	47.83
SIE(all)	79.91 ± 0.18	53.12 ± 0.05	58.42 ± 0.20	56.11 ± 0.08	63.56 ± 0.11	85.34 ± 0.19	46.88 ± 0.23
Ours	81.12 ± 0.11	54.22 ± 0.10	59.21 ± 0.14	59.53 ± 0.13	67.66 ± 0.12	84.32 ± 0.09	49.75 ± 0.22

ADE20K	mIOU	mAcc	aAcc
Supervised	0.268	0.328	0.751
SIE(all)	0.292	0.356	0.774
Ours	0.312	0.379	0.802

Utilisation of unknown transformations for learning equivariant representations

Cifar10	Rotation	Color	Blur Radius	Translation
Supervised	0.214	0.229	0.437	0.386
SIE(all)	0.402	0.395	0.511	0.479
Ours	0.815	0.879	0.944	0.878

- With the CIFAR10 dataset, we denote 80% of the training data as data subject to unknown transformations, and for 20% the transformations, including their parameters, are known.
- SIE as well as supervised are trained exclusively on the remaining 20% data with known transformations, whereas our method can leverage the entire dataset.

Acknowledgement

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS[2] at Jülich Supercomputing Centre (JSC).

Reference List

[1] Maurice Weiler, Patrick Forr e, Erik Verlinde, and Max Welling, Equivariant and Coordinate Inde-pendent Convolutional Networks,

[2] Jülich Supercomputing Centre. (2021). JUWELS Cluster and Booster: Exascale Pathfinder with Modular Supercomputing Architecture at Juelich Supercomputing Centre. *Journal of large-scale research facilities, 7*, A183. http://dx.doi.org/10.17815/jlsrf-7-183