Equivariant Representation Learning for Augmentation-based Self-Supervised Learning via Image Reconstruction Qin Wang Kai Krajsek Hanno Scharr IAS-8: Data Analytics and Machine Learning, Forschungszentrum Jülich, Germany Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Germany {qi.wang, k.krajsek, h.scharr}@fz-juelich.de ## **Motivation** #### Invariance #### **Equivariance** Figure 1. Commutative diagram for invariance and equivariance. Retrieved from *Equivariant and Coordinate Independent Convolutional Networks*[1], (p. v), by Maurice Weiler, 2023. Equivariance in feature learning ensures that a model's learned representations remain consistent under various transformations, including 2D or 3D translations, rotations, scaling, and changes in color or illumination Current state-of-the-art method that introduce equivariance to SSL, SIE - has been tested only on small, artificial datasets (3DIEBench), limiting its proven applicability to real-world scenarios. - It requires prior knowledge of transformations to learn equivariant features, which may not always be available or easily determinable. - It struggles when dealing with images that have undergone unknown transformations. # Contribution - We introduce reconstruction as an auxiliary task to learn equivariance, addressing the limitations of augmentation-based self-supervised learning. - We demonstrate the effectiveness of our method on both artificial (3DIEBench) and natural (ImageNet) datasets, showing comparable (3DIEBench) and improved performance (ImageNet) compared to existing baselines. - We provide extensive evaluations on various image transformations, including rotation, color jittering, translation, and scaling, demonstrating the robustness of our learned representations. ## Method #### **Split Invariant and Equivariant Representations** #### **Cross-Attention Reconstruction** - The framework divides the representations extracted from the encoder into two parts: one invariant and the other equivariant. The invariant part uses augmentation-based SSL loss to encourage the network to learn invariant features. - To facilitate the learning of equivariant features from the images, we introduce an auxiliary reconstruction task. The reconstruction is performed using a decoder, **d**, which consists of a cross-attention layer followed by **L** self-attention layers. # **Experimental Results** #### **Evaluation on 3DIEBench dataset.** | 3DIEBench | Classification | Rotation Prediction | Color Prediction | |----------------|----------------|---------------------|------------------| | SIE(rot) | 0.820 | 0.724 | 0.054 | | SIE(rot+color) | 0.809 | 0.502 | 0.980 | | Ours | 0.782 | <u>0.554</u> | 0.954 | Our model strikes a balance, performing well across all tasks. #### **Evaluation on CIFAR10 dataset.** | Cifar10 | Rot Prediction | Color Prediction | Blur Radius | Trans Prediction | |------------|----------------|------------------|-------------|------------------| | SIE(rot) | 0.989 | 0.887 | 0.836 | 0.911 | | SIE(color) | 0.813 | 0.921 | 0.825 | 0.822 | | SIE(blur) | 0.814 | 0.833 | 0.990 | 0.807 | | SIE(trans) | 0.876 | 0.812 | 0.810 | 0.987 | | SIE(all) | 0.845 | 0.864 | 0.889 | 0.886 | | Ours | 0.826 | 0.906 | 0.972 | 0.890 | ### **Evaluation on ImageNet.** | ImageNet | Rotation | Color | Blur radius | Translation | Crop prediction | Flip | |----------------------------|-------------------|-------------------------------------|-------------------|------------------------------|-------------------|-------------------| | SIE(rot) | 0.990 | 0.867 | 0.042 | 0.540 | 0.266 | 0.532 | | SIE(color) | 0.078 | 0.890 | 0.097 | 0.355 | 0.178 | 0.333 | | SIE(blur) | 0.153 | 0.883 | 0.941 | 0.189 | 0.412 | 0.415 | | SIE(trans) | 0.213 | 0.885 | 0.023 | 0.978 | 0.368 | 0.511 | | SIE(crop) | 0.273 | 0.819 | 0.018 | 0.450 | 0.922 | 0.485 | | SIE(flip) | 0.155 | 0.798 | 0.056 | 0.312 | 0.266 | 0.993 | | VICReg 4 | 0.318 ± 0.005 | 0.804 ± 0.016 | 0.101 ± 0.023 | 0.333 ± 0.008 | 0.423 ± 0.140 | 0.872 ± 0.070 | | SIE(all) | 0.331 ± 0.007 | 0.899 ± 0.003 | 0.211 ± 0.005 | 0.925 ± 0.002 | 0.835 ± 0.008 | 0.945 ± 0.004 | | SIE(all, single each time) | 0.435 ± 0.011 | 0.907 ± 0.009 | 0.377 ± 0.004 | $\overline{0.922 \pm 0.010}$ | 0.829 ± 0.005 | 0.939 ± 0.007 | | Ours | 0.862 ± 0.004 | $\textbf{0.921} \pm \textbf{0.006}$ | 0.823 ± 0.003 | 0.853 ± 0.005 | 0.912 ± 0.002 | 0.952 ± 0.008 | - SIE models excel when pretrained with specific single transformations; their performance drops significantly for other transformations. - Pretraining with randomly selected transformations (as in SIE (all, single each time)) improves results compared to SIE(all). - Our models can handle unknown transformations better than SIE. # **Transfer Learning Results** ## Transfer learning on classification and segmentation downstream tasks. | Methods | Cifar10 13 | Cifar100 [13] | Food101 [14] | SUN397 15 | DTD [16] | Pets 17 | Aircraft [18] | |------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | SIE(rot) | 71.56 | 46.88 | 55.48 | 43.11 | 64.22 | 81.51 | 50.21 | | SIE(color) | 67.99 | 48.78 | 57.19 | 42.32 | 60.87 | 80.27 | 41.15 | | SIE(crop) | 80.84 | 49.35 | 59.24 | 52.38 | 61.82 | 84.63 | 47.35 | | Supervised | 80.99 | 50.66 | 59.32 | 52.98 | 62.03 | 83.59 | 47.83 | | SIE(all) | 79.91 ± 0.18 | 53.12 ± 0.05 | 58.42 ± 0.20 | 56.11 ± 0.08 | 63.56 ± 0.11 | 85.34 ± 0.19 | 46.88 ± 0.23 | | Ours | 81.12 ± 0.11 | 54.22 ± 0.10 | 59.21 ± 0.14 | 59.53 ± 0.13 | 67.66 ± 0.12 | 84.32 ± 0.09 | 49.75 ± 0.22 | | ADE20K | mIOU | mAcc | aAcc | |------------|-------|-------|-------| | Supervised | 0.268 | 0.328 | 0.751 | | SIE(all) | 0.292 | 0.356 | 0.774 | | Ours | 0.312 | 0.379 | 0.802 | ## Utilisation of unknown transformations for learning equivariant representations | Cifar10 | Rotation | Color | Blur Radius | Translation | |------------|----------|-------|-------------|-------------| | Supervised | 0.214 | 0.229 | 0.437 | 0.386 | | SIE(all) | 0.402 | 0.395 | 0.511 | 0.479 | | Ours | 0.815 | 0.879 | 0.944 | 0.878 | - With the CIFAR10 dataset, we denote 80% of the training data as data subject to unknown transformations, and for 20% the transformations, including their parameters, are known. - SIE as well as supervised are trained exclusively on the remaining 20% data with known transformations, whereas our method can leverage the entire dataset. #### **Acknowledgement** The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS[2] at Jülich Supercomputing Centre (JSC). #### **Reference List** [1] Maurice Weiler, Patrick Forr e, Erik Verlinde, and Max Welling, Equivariant and Coordinate Inde-pendent Convolutional Networks, [2] Jülich Supercomputing Centre. (2021). JUWELS Cluster and Booster: Exascale Pathfinder with Modular Supercomputing Architecture at Juelich Supercomputing Centre. *Journal of large-scale research facilities, 7*, A183. http://dx.doi.org/10.17815/jlsrf-7-183