001037124 001__ 1037124
001037124 005__ 20250725202231.0
001037124 0247_ $$2doi$$a10.1038/s41524-024-01502-4
001037124 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00471
001037124 0247_ $$2WOS$$aWOS:001394553000002
001037124 037__ $$aFZJ-2025-00471
001037124 082__ $$a004
001037124 1001_ $$0P:(DE-Juel1)179002$$aCarbone, Johanna$$b0$$eCorresponding author$$ufzj
001037124 245__ $$aMagnetic anisotropy of 4f atoms on a WSe2 monolayer: a DFT + U study
001037124 260__ $$aLondon$$bNature Publ. Group$$c2025
001037124 3367_ $$2DRIVER$$aarticle
001037124 3367_ $$2DataCite$$aOutput Types/Journal article
001037124 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736853937_28557
001037124 3367_ $$2BibTeX$$aARTICLE
001037124 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037124 3367_ $$00$$2EndNote$$aJournal Article
001037124 520__ $$aInspired by recent advancements in the field of single-atom magnets, particularly those involving rare-earth (RE) elements, we present a theoretical exploration employing DFT+U calculations to investigate the magnetic properties of selected 4f atoms, specifically Eu, Gd, and Ho, on a monolayer of the transition-metal dichalcogenide WSe2 in the 1H-phase. This study comparatively examines RE with diverse 4f orbital fillings and valence chemistry, aiming to understand how different coverage densities atop WSe2 affect magnetocrystalline anisotropy. We observe that RE lacking 5d occupation exhibit larger magnetic anisotropy energies at high densities, while those with outer 5d electrons show larger anisotropies in dilute configurations. Additionally, even half-filled 4f shell atoms with small orbital magnetic moments can generate substantial energy barriers for magnetization rotation due to prominent orbital hybridizations with WSe2. Open 4f shell atoms further enhance anisotropy barriers through spin-orbit coupling effects. These aspects are crucial for realizing stable magnetic information units experimentally.
001037124 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001037124 536__ $$0G:(GEPRIS)319898210$$aSFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210)$$c319898210$$x1
001037124 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037124 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b1
001037124 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
001037124 773__ $$0PERI:(DE-600)2843287-3$$a10.1038/s41524-024-01502-4$$gVol. 11, no. 1, p. 12$$n1$$p12$$tnpj computational materials$$v11$$x2057-3960$$y2025
001037124 8564_ $$uhttps://juser.fz-juelich.de/record/1037124/files/s41524-024-01502-4.pdf$$yOpenAccess
001037124 8767_ $$8SN-2025-00432-b$$92025-05-26$$a1200214585$$d2025-07-25$$eAPC$$jZahlung erfolgt
001037124 909CO $$ooai:juser.fz-juelich.de:1037124$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001037124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179002$$aForschungszentrum Jülich$$b0$$kFZJ
001037124 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)179002$$a Institute of Theoretical Physics, Technical University of Vienna, Vienna, Austria$$b0
001037124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b1$$kFZJ
001037124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001037124 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001037124 9141_ $$y2025
001037124 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001037124 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037124 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ COMPUT MATER : 2022$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNPJ COMPUT MATER : 2022$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:42:55Z
001037124 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:42:55Z
001037124 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037124 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:42:55Z
001037124 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001037124 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001037124 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001037124 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001037124 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001037124 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001037124 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001037124 920__ $$lyes
001037124 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001037124 9801_ $$aFullTexts
001037124 980__ $$ajournal
001037124 980__ $$aVDB
001037124 980__ $$aUNRESTRICTED
001037124 980__ $$aI:(DE-Juel1)PGI-1-20110106
001037124 980__ $$aAPC