001037135 001__ 1037135
001037135 005__ 20250203124527.0
001037135 0247_ $$2doi$$a10.1039/D4CC05133E
001037135 0247_ $$2ISSN$$a0022-4936
001037135 0247_ $$2ISSN$$a0009-241X
001037135 0247_ $$2ISSN$$a1359-7345
001037135 0247_ $$2ISSN$$a1364-548X
001037135 0247_ $$2ISSN$$a2050-5620
001037135 0247_ $$2ISSN$$a2050-5639
001037135 0247_ $$2pmid$$a39641155
001037135 0247_ $$2WOS$$aWOS:001370799600001
001037135 037__ $$aFZJ-2025-00482
001037135 082__ $$a540
001037135 1001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr$$b0$$eCorresponding author
001037135 245__ $$aAtomically thin 2D materials for solution-processable emerging photovoltaics
001037135 260__ $$aCambridge$$bSoc.$$c2025
001037135 3367_ $$2DRIVER$$aarticle
001037135 3367_ $$2DataCite$$aOutput Types/Journal article
001037135 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737096416_7619
001037135 3367_ $$2BibTeX$$aARTICLE
001037135 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037135 3367_ $$00$$2EndNote$$aJournal Article
001037135 520__ $$aAtomically thin 2D materials, such as graphene and graphene oxide, covalent organic frameworks, layered carbides, and metal dichalcogenides, reveal a unique variability of electronic and chemical properties, ensuring their prospects in various energy generation, conversion, and storage applications, including light harvesting in emerging photovoltaic (ePV) devices with organic and perovskite absorbers. Having an extremely high surface area, the 2D materials allow a broad variability of the bandgap and interband transition type, conductivity, charge carrier mobility, and work function through mild chemical modifications, external stimuli, or combination with other 2D species into van-der-Waals heterostructures. This review provides an account of the most prominent “selling points” of atomically thin 2D materials as components of ePV solar cells, including highly tunable charge extraction selectivity and work function, structure-directing and stabilizing effects on halide perovskite light absorbers, as well as broad adaptability of 2D materials to solution-based manufacturing of ePV solar cells using sustainable and upscalable printing technologies. A special focus is placed on the large potential of the materials discovery and design of ePV functionalities based on van-der-Waals stacking of atomically thin 2D building blocks, which can open a vast compositional domain of new materials navigable with machine-learning-based accelerated materials screening
001037135 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001037135 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037135 7001_ $$0P:(DE-Juel1)188483$$aRaievska, Oleksandra$$b1
001037135 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b2
001037135 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b3
001037135 773__ $$0PERI:(DE-600)1472881-3$$a10.1039/D4CC05133E$$gVol. 61, no. 3, p. 455 - 475$$n3$$p455 - 475$$tChemical communications$$v61$$x0022-4936$$y2025
001037135 8564_ $$uhttps://juser.fz-juelich.de/record/1037135/files/d4cc05133e.pdf
001037135 8767_ $$d2025-01-13$$eHybrid-OA$$jPublish and Read$$z??????? Opt out ????
001037135 909CO $$ooai:juser.fz-juelich.de:1037135$$popenCost$$pVDB
001037135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b0$$kFZJ
001037135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188483$$aForschungszentrum Jülich$$b1$$kFZJ
001037135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b2$$kFZJ
001037135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b3$$kFZJ
001037135 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001037135 9141_ $$y2025
001037135 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-05$$wger
001037135 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM COMMUN : 2022$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001037135 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
001037135 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001037135 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001037135 920__ $$lyes
001037135 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001037135 980__ $$ajournal
001037135 980__ $$aVDB
001037135 980__ $$aI:(DE-Juel1)IET-2-20140314
001037135 980__ $$aAPC
001037135 980__ $$aUNRESTRICTED
001037135 9801_ $$aAPC