001037138 001__ 1037138
001037138 005__ 20250203103158.0
001037138 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00485
001037138 037__ $$aFZJ-2025-00485
001037138 041__ $$aEnglish
001037138 1001_ $$0P:(DE-Juel1)196090$$aVisser, Lino$$b0$$eCorresponding author
001037138 1112_ $$a87. Jahrestagung der DPG und DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM)$$cBerlin$$d2024-03-17 - 2024-03-22$$wGermany
001037138 245__ $$aTwo-stage magnetic shielding for superconducting circuits in an adiabatic demagnetization refrigerator
001037138 260__ $$c2024
001037138 3367_ $$033$$2EndNote$$aConference Paper
001037138 3367_ $$2BibTeX$$aINPROCEEDINGS
001037138 3367_ $$2DRIVER$$aconferenceObject
001037138 3367_ $$2ORCID$$aCONFERENCE_POSTER
001037138 3367_ $$2DataCite$$aOutput Types/Conference Poster
001037138 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1737025491_12707$$xAfter Call
001037138 502__ $$cRWTH Aachen
001037138 520__ $$aAdiabatic demagnetization refrigeration (ADR) is a promising technology for future quantum technology applications. Cooling units for ADRs are cheap and reliable while enabling base temperatures comparable to those obtained in dilution refrigerators. A challenge are the residual magnetic fields originating from the magnet used for recharging the paramagnetic salts, as these lower the operation fidelity of superconducting circuits. Here, we present the design of a 4 Kelvin two-stage mu-metal and Niobium magnetic shield with ports for 4 RF wires, and 48 DC lines. The lowest temperature stage enters the magnetic shield through a feedthrough, and contains an additional Copper infrared shield around the sample space. Using finite element simulations, we quantify the magnetic shielding factor before manufacturing. To benchmark the ADRs shielding performance, we characterize a set of Niobium resonators, measuring their quality factor. First results indicate a competitive performance of these resonators in our customized set-up.
001037138 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001037138 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
001037138 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001037138 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
001037138 7001_ $$0P:(DE-Juel1)184428$$aNeis, Marc$$b1
001037138 7001_ $$0P:(DE-Juel1)190989$$aGuimaraes, Jeferson R.$$b2
001037138 7001_ $$0P:(DE-Juel1)178064$$aJerger, Markus$$b3
001037138 7001_ $$0P:(DE-Juel1)180350$$aBushev, Pavel$$b4
001037138 7001_ $$0P:(DE-Juel1)190990$$aMourik, Vincent$$b5
001037138 7001_ $$0P:(DE-Juel1)190190$$aBarends, Rami$$b6
001037138 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/tt/session/18/contribution/70
001037138 8564_ $$uhttps://juser.fz-juelich.de/record/1037138/files/Berlin%20DPG%202024%20Poster%20Lino%20Visser.pdf$$yOpenAccess
001037138 909CO $$ooai:juser.fz-juelich.de:1037138$$pdriver$$pVDB$$popen_access$$popenaire
001037138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196090$$aForschungszentrum Jülich$$b0$$kFZJ
001037138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184428$$aForschungszentrum Jülich$$b1$$kFZJ
001037138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190989$$aForschungszentrum Jülich$$b2$$kFZJ
001037138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178064$$aForschungszentrum Jülich$$b3$$kFZJ
001037138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180350$$aForschungszentrum Jülich$$b4$$kFZJ
001037138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190990$$aForschungszentrum Jülich$$b5$$kFZJ
001037138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190190$$aForschungszentrum Jülich$$b6$$kFZJ
001037138 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001037138 9141_ $$y2024
001037138 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037138 920__ $$lyes
001037138 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001037138 9201_ $$0I:(DE-Juel1)PGI-13-20210701$$kPGI-13$$lQuantum Computing$$x1
001037138 980__ $$aposter
001037138 980__ $$aVDB
001037138 980__ $$aUNRESTRICTED
001037138 980__ $$aI:(DE-Juel1)PGI-11-20170113
001037138 980__ $$aI:(DE-Juel1)PGI-13-20210701
001037138 9801_ $$aFullTexts