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We present the first numerical investigation of the method proposed in Ref. [1] to utilize gradient
flow to obtain precise determinations of higher moments of PDFs from lattice QCD, circumventing
power divergent mixing with lower dimensional operators. We apply this method to obtain
moments of the isovector PDF of the pion using four Stabilized Wilson Fermion ensembles with
𝑚𝜋 ≃ 411 MeV and lattice spacings 𝑎 ≃ 0.064, 0.077, 0.094, and 0.12 fm. We present preliminary
results of ratios of three-point functions as a function of flow time, which can be used to extract
the ratios ⟨𝑥2⟩ /⟨𝑥⟩ and ⟨𝑥3⟩ /⟨𝑥⟩. We find that a significantly higher precision can be achieved
with this method compared to the canonical approach, which requires boosting and cannot reach
higher than the ⟨𝑥3⟩ moment.
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1. Introduction

The study of parton distribution functions (PDFs) is essential for interpreting data from both
current and future high-energy physics experiments. PDFs describe the internal structure of hadrons
in terms of their constituent quarks and gluons, providing crucial input for the precise analysis of
results from particle colliders like the Large Hadron Collider (LHC) and forthcoming facilities such
as the Electron-Ion Collider (EIC).

Lattice QCD provides a first-principles approach to studying hadron structure, offering a
method to directly compute PDFs. Over the past decade, numerous approaches have been proposed
to achieve direct determinations of PDFs from lattice QCD simulations1. Among these, alternative
methods, such as those presented in Refs. [3–5], leverage non-local Wilson line operators and
derivatives of the Ioffe time distribution [6], showing potential for calculating higher moments of
PDFs on the lattice.

Pioneering studies [7–9] have already identified the limitations of this approach. The breaking
of continuous symmetries at finite lattice spacing forces quantum corrections to respect the residual
hypercubic symmetry H(4). As a result, the renormalization of local fields, related to PDF moments,
is complicated by mixings with lower-dimensional fields, which induce power divergences with the
lattice spacing, 𝑎. For moments up to

〈
𝑥3〉, this mixing can be avoided by introducing a non-zero

spatial momentum, though this increases the noise-to-signal ratio in correlation functions. However,
for higher moments ⟨𝑥𝑛⟩ with 𝑛 > 3, power divergences become unavoidable, effectively preventing
the determination of higher moments.

In Ref. [1], one of the co-authors of this contribution proposed a novel methodology to address
the challenge of determining moments of any order of PDFs, while simultaneously improving the
noise-to-signal ratio for moments that can be approached with standard methods. This approach
utilizes the gradient flow (GF) for gauge [10–12] and fermion [13] fields as an intermediate regulator
to restore the continuum O(4) symmetry before matching the results obtained at finite flow time, 𝑡,
using perturbation theory.

In this proceeding, after a brief recap of the method described in [1], we present preliminary
results for the moments of pion PDFs in the non-singlet case. These preliminary results confirm
expectations, allowing the determination of moments up to

〈
𝑥5〉 with moderate computational

effort, while simultaneously improving the noise-to-signal ratio compared to standard techniques.

2. Flowed moments

Moments of PDFs are related to hadronic matrix elements of local operators. In the non-singlet
case, the dominant contribution at large 4-momentum transfer to the nucleon, 𝑄2 = −𝑞2, as seen in
DIS experiments, comes from twist-2 operators

𝑂𝑟𝑠
𝑛 (𝑥) = 𝑂𝑟𝑠

{𝜇1 · · ·𝜇𝑛 } (𝑥) = 𝜓
𝑟 (𝑥)𝛾{𝜇1

↔
𝐷𝜇2 · · ·

↔
𝐷 𝜇𝑛 }𝜓

𝑠 (𝑥) , (1)

1See Ref. [2] for a review and a comprehensive list of references.
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where 𝜓 and 𝜓 are fermion fields,
↔
𝐷𝜇𝑖 = 1/2

(
→
𝐷𝜇𝑖 −

←
𝐷𝜇𝑖

)
denotes symmetrized covariant deriva-

tives and {𝜇1 · · · 𝜇𝑛} indicates normalized symmetrization over the Lorentz indices

𝑂𝑟𝑠
{𝜇1...𝜇𝑛 } =

1
𝑛!

∑︁
𝜎∈permutations

𝑂𝑟𝑠
𝜇𝜎 (1) ...𝜇𝜎 (𝑛) . (2)

To avoid complications with mixing with gluonic operators, we focus on the non-singlet case 𝑟 ≠ 𝑠.
For unpolarized targets, these operators are directly related to the moments of PDFs of the hadron ℎ〈

ℎ(𝑝) |𝑂𝑛 |ℎ(𝑝)
〉
= 2

(
𝑝𝜇1 · · · 𝑝𝜇𝑛 − trace terms

) 〈
𝑥𝑛−1〉

ℎ
(𝜇) , (3)

where we omit the flavor indices for simplicity, and 𝑂𝑛 denotes the twist-2 operators with trace
terms subtracted. The energy scale 𝜇 represents the renormalization scale of the local operators (1).

The flowed operators are defined as

𝑂𝑟𝑠
𝑛 (𝑥, 𝑡) = 𝜒𝑟 (𝑥, 𝑡)𝛾{𝜇1

↔
𝐷𝜇2 · · ·

↔
𝐷 𝜇𝑛 } 𝜒

𝑠 (𝑥, 𝑡) , (4)

where 𝜒𝑟 (𝑥, 𝑡), 𝜒𝑟 (𝑥, 𝑡), and 𝐵𝜇 (𝑥, 𝑡) denote respectively fermion and gauge fields satisfying the
GF equations from Refs. [11, 13]. These operators renormalize multiplicatively, with a common
renormalization factor depending only on the fermion content. For the flowed fermion fields, a
commonly adopted scheme introduces ringed fields [14], �̊� and �̊�, defined by the gauge-invariant
condition 〈

�̊�(𝑥, 𝑡)
↔
/𝐷�̊�(𝑥, 𝑡)

〉
= − 𝑁𝑐

(4𝜋)2𝑡2
. (5)

This condition is particularly advantageous, as it is regularization independent and can be adopted
both in perturbation theory and non-perturbatively in lattice QCD simulations.

After taking the continuum limit of hadronic matrix elements at a fixed flow time 𝑡 > 0, the
physical renormalized matrix element at 𝑡 = 0 can be determined using the short flow time expansion
(SFTX) [15]. Generally, the SFTX for twist-2 operators 𝑂𝑛 (𝑥, 𝑡) includes power-divergent terms,
where the divergence depends on the dimensions of the operator and those of the lower-dimensional
operators with the same symmetry properties. These terms, however, are classified according to
continuum O(4) symmetry. Traceless operators with symmetrized Lorentz indices belong to an
irreducible representation of O(4), and as a result, their SFTX readŝ̊

𝑂
𝑟𝑠

𝑛 (𝑡) = 𝑐𝑛 (𝑡, 𝜇)𝑂𝑟𝑠
𝑛,MS(𝜇) + · · · , (6)

where contributions at 𝑡 = 0 come exclusively from the corresponding traceless operators, which
are directly related to the moments of PDFs. The operator ̂̊

𝑂
𝑟𝑠

𝑛 (𝑡) is defined as Eq, (4), using
ringed fermion fields, and the operator at 𝑡 = 0 is renormalized in the same scheme adopted for the
calculation of the matching coefficients, 𝑐𝑛 (𝑡, 𝜇).

The matching coefficients are calculable using standard techniques [16–18] and details on this
calculation can be found in Ref. [1]. The result at next-to-leading-order (NLO) reads

𝑐𝑛 (𝑡, 𝜇) = 1 + 𝑔
2(𝜇)
(4𝜋)2

𝑐
(1)
𝑛 (𝑡, 𝜇) +𝑂 (𝑔4) . (7)
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where 𝑔2(𝜇) is the renormalized strong coupling in the MS scheme. The one-loop coefficient is
given by

𝑐
(1)
𝑛 (𝑡, 𝜇) = 𝐶𝐹

[
𝛾𝑛 log

(
8𝜋𝜇2𝑡

)
+ 𝐵𝑛

]
, (8)

where 𝛾𝑛 = 1 + 4
∑𝑛

𝑗=2
1
𝑗
− 2

𝑛(𝑛+1) , and provides a welcome check because it agrees with the 1-loop
anomalous dimension of the twist-2 operators [19]. The finite part is given by

𝐵𝑛 =
4

𝑛(𝑛 + 1) + 4
𝑛 − 1
𝑛

log 2 + 2 − 4𝑛2

𝑛(𝑛 + 1) 𝛾𝐸 −
2

𝑛(𝑛 + 1)𝜓(𝑛 + 2) + 4
𝑛
𝜓(𝑛 + 1) − 4𝜓(2)

− 4
𝑛∑︁
𝑗=2

1
𝑗 ( 𝑗 − 1)

1
2 𝑗
𝜙(1/2, 1, 𝑗) − log (432) , (9)

where 𝜙(𝑧, 𝑠, 𝑎) is the Lerch transcendent. For generic 𝑛 Eqs. (8) and (9) have been determined
in [1] and they agree with the result for 𝑛 = 2 derived in [14]. The expression for 𝐵𝑛 can be written
in a slightly more compact way using the relations of the digamma functions 𝜓(𝑧) with the harmonic
numbers 𝐻𝑛

𝐵𝑛 =
2 − 4𝑛2(𝑛 + 2)
𝑛(𝑛 + 1)2

+ 2(2𝑛 + 1)
𝑛(𝑛 + 1) 𝐻𝑛 −

4
𝑛

log(2) − 3 log(3) − 4
𝑛∑︁
𝑗=2

1
𝑗 ( 𝑗 − 1)

1
2 𝑗
𝜙(1/2, 1, 𝑗) , (10)

and perhaps further simplified using generalized harmonic sums defined in [20]. The same matching
coefficients in the MS scheme are obtained with the substitution 𝜇2 → 𝜇2𝑒𝛾𝐸/4𝜋. The extension to
next-to-next-to-leading order (NNLO) in the perturbative calculation appears achievable with the
advanced techniques currently available [21].

The strategy for the calculation of a generic moment can be summarized in the following steps:
1) construct the symmetric and traceless operator𝑂𝑟𝑠

𝑛 for a given 𝑛; 2) compute the hadronic matrix
element

〈
ℎ(𝑝) |̂̊𝑂𝑟𝑠

𝑛 |ℎ(𝑝)
〉
; 3) take the continuum limit at fixed flow time 𝑡, in physical units; 4)

calculate the moment renormalized in the MS scheme〈
𝑥𝑛−1〉MS (𝜇) = 𝑐𝑛 (𝑡, 𝜇)−1 〈𝑥𝑛−1〉 (𝑡) . (11)

The hadronic matrix element can be calculated using a spectral decomposition of 3-point correlation
functions, as described in detail in Sec. 3. Since the matching in Eq. (11) holds for any 𝑛, we have
the freedom to choose the Lorentz indices of the local field. For instance, the linear combination

𝑂4444 −
4∑︁

𝛼=1

3
4
𝑂 {𝛼𝛼44} +

1
16

4∑︁
𝛼,𝛽=1

𝑂 {𝛼𝛼𝛽𝛽} . (12)

enables the determination of
〈
𝑥3〉 without requiring any spatial external momentum, thus improving

the noise-to-signal ratio. This is confirmed from our numerical experiment, as discussed in Sec. 4.
The matching coefficients in Eq. (7) are calculated with flowed fermions defined in a ringed scheme.
Alternatively, ratios of flowed correlators with the same number of fermion fields can be analyzed.
For example, using the second moment, ⟨𝑥⟩MS, as an input observable, we can determine all the
other moments with 〈

𝑥𝑛−1〉MS
ℎ
(𝜇) = ⟨𝑥⟩MS

ℎ (𝜇)
𝑐2(𝑡, 𝜇)
𝑐𝑛 (𝑡, 𝜇)

𝑅ℎ
𝑛 (𝑡) , (13)
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where the ratios

𝑅ℎ
𝑛 (𝑡) =

〈
𝑥𝑛−1〉

ℎ
(𝑡)

⟨𝑥⟩ℎ (𝑡)
, 𝑛 > 2 , (14)

are computed with bare fields and have a finite continuum limit. The determination of ratios like
the ones in Eq. (14) offers additional advantages: reduced statistical uncertainty, taking advantage
of correlations among data, and the cancellation of cutoff effects, as discussed in Sec. 2.1. The
method is general and can be applied with any lattice action. With appropriate modifications, it can
be also used to study distribution amplitudes and other distribution functions.

2.1 Discretization uncertainties

For Wilson-type quarks, such as non-perturbatively improved clover fermions, two types of
O(𝑎) cutoff effects remain unaccounted for beyond the usual improvement terms. First, there are
O(𝑎𝑚) terms associated with flowed fermion fields, which are universal for any flowed fermion field
and depend only on their fermion content. However, in the ratios of correlation functions used to
extract the reduced matrix elements in Eq. (14), these O(𝑎𝑚) terms cancel out.

Second, short-distance O(𝑎) cutoff effects may arise when the physical distance between
the flowed fermion field and the unflowed hadron interpolators is small. Since extracting the
reduced matrix elements (14) requires a large physical separation between the source (and sink)
and the flowed operator, we can ensure that these O(𝑎) cutoff effects are negligible2. A numerical
confirmation of this fact for a different correlation function can be found in Ref. [22].

One of the key advantages of this method is that specific O(𝑎) cutoff effects for twist-2 operators
are absent, independent of 𝑛. As a result, the scaling toward the continuum limit for flowed moments
computed with Wilson-type fermions is greatly improved compared to standard methods, where
𝑛-dependent O(𝑎) terms with unknown improvement coefficients are typically required.

3. Numerical implementation

To test the method just described we compute the first few moments of the pion PDFs on
OpenLat gauge configurations [23, 24]. Moments of PDFs are related to the connected 3-point
function, projected to vanishing spatial momentum, and given by

𝐶
3-pt
𝑛 (𝑥4, 𝑦4; 𝑡) = 𝑎6

∑︁
x,y
⟨𝑃𝑑𝑢 (x, 𝑥4) ̂̊𝑂𝑛 (y, 𝑦4; 𝑡)𝑃𝑢𝑑 (0)⟩𝑐 , (15)

where the interpolator 𝑃𝑢𝑑 (𝑥) = 𝜓𝑢 (𝑥)𝛾5𝜓𝑑 (𝑥) has the quantum numbers of a 𝜋+ state. In Eq. (15)
we fix the source to be at the origin to simplify the notation, but in practice we use a single Z4

stochastic source per gauge configuration, with source locations randomly sampled from a uniform
4-d probability distribution. The final result, because of translation invariance, depends only on the
source-sink separation.

For 𝑥4 ≫ 𝑦4 ≫ 0 the ground state |𝜋(0)⟩ dominates the spectral decomposition of Eq. (15)

𝐶
3-pt
𝑛 (𝑥4; 𝑡) = |𝑍𝜋 |2

4𝑚2
𝜋

𝑒−𝑚𝜋 𝑥4 �̊�𝑛 (𝑡) + · · · , �̊�𝑛 (𝑡) ≡ ⟨𝜋(0) | ̂̊𝑂𝑛 (0; 𝑡) |𝜋(0)⟩ , (16)

2A numerical investigation is currently ongoing.
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where the missing terms are contributions of excited states. The normalization 𝑍𝜋 = ⟨0| 𝑃 |𝜋(0)⟩
represents the overlap factor, which also contributes to the pion two-point function. The validity of
the spectral decomposition depends on the physical “extension” of the local field, ̂̊𝑂𝑛 (0; 𝑡), being
smaller than the separation with the pion interpolators. Using

√
8𝑡 as a rough estimate of the size of̂̊

𝑂𝑛 (0; 𝑡), ideally we would work in the region where
√

8𝑡 ≪ 𝑥4 − 𝑦4 and
√

8𝑡 ≪ 𝑦4. However, one
should verify numerically whether the 3-point functions are projected to the ground state at finite
flow time.

We are interested in determining the matrix elements �̊�𝑛 (𝑡) defined in Eq. (16). Applying the
SFTX in Eq. (6) to ̂̊

𝑂𝑛 (0; 𝑡) is then possible, using the perturbative matching coefficients in Eq. (7),
to determine the same matrix element with twist-2 operator renormalized for example in the MS
scheme 𝐴MS

𝑛 (𝜇) ≡ ⟨𝜋(0) | 𝑂MS
𝑛 (𝜇) |𝜋(0)⟩.

As we have shown in the previous section, with this new method, we have in principle the
freedom to choose for the fields ̂̊

𝑂𝑛 (0; 𝑡) any Lorentz indices. To avoid the use of external spatial
momentum it is convenient to choose all temporal indices, and from now on with ̂̊

𝑂𝑛 (0; 𝑡) we denote
a field with 𝑛 indices given by 𝜇1 · · · 𝜇𝑛 = 4 · · · 4. We emphasize that because we want to determine
the matrix elements of a traceless operator we need to subtract contributions with operators that
include spatial indices (see e.g. Eq. (12)). For example, for the cases 𝑛 = 2, 3, 4 a total of 4, 10, and
40 unique index combinations are needed:

̂̊
𝑂𝑛=2 = �̊�44 −

1
3

3∑︁
𝑖=1

�̊�𝑖𝑖 , (17)

̂̊
𝑂𝑛=3 = �̊�444 −

1
3

3∑︁
𝑖=1
(�̊�𝑖𝑖4 + �̊�𝑖4𝑖 + �̊�4𝑖𝑖) , (18)

̂̊
𝑂𝑛=4 = �̊�4444 +

1
5

3∑︁
𝑖=1

�̊�𝑖𝑖𝑖𝑖 +
1

15

3∑︁
𝑖, 𝑗=1, 𝑗>𝑖

(�̊�𝑖𝑖 𝑗 𝑗 + �̊�𝑖 𝑗𝑖 𝑗 + �̊�𝑖 𝑗 𝑗𝑖 + �̊� 𝑗 𝑗𝑖𝑖 + �̊� 𝑗𝑖 𝑗𝑖 + �̊� 𝑗𝑖𝑖 𝑗)(19)

− 1
3

3∑︁
𝑖=1
(�̊�𝑖𝑖44 + �̊�𝑖4𝑖4 + �̊�𝑖44𝑖 + �̊�44𝑖𝑖 + �̊�4𝑖4𝑖 + �̊�4𝑖𝑖4) , (20)

where the traceless operators are normalized such that the coefficient of the operator with all
temporal Lorentz indices is set to one. Using Lorentz symmetry and converting to a Euclidean
metric the parametrization of the matrix elements is then given by

𝐴MS
𝑛=2(𝜇) = −2𝑚2

𝜋 ⟨𝑥⟩MS (𝜇) , (21)

𝐴MS
𝑛=3(𝜇) = 2𝑚3

𝜋 ⟨𝑥2⟩MS (𝜇) , (22)

𝐴MS
𝑛=4(𝜇) = −2𝑚4

𝜋 ⟨𝑥3⟩MS (𝜇) . (23)

Although the method allows for the independent calculation of all moments, as a first numerical
test, we find it convenient to compute ratios of flowed moments, as in Eq. (14). By using the matching
coefficients 𝑐𝑛 (𝑡, 𝜇), it is then possible to determine all moments normalized with respect to ⟨𝑥⟩MS.
Since the calculation of ⟨𝑥⟩ is now straightforward and presents no significant difficulties (see
Refs. [25, 26] for recent determinations), we can easily convert the ratio results into values for the

6
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individual moments. The calculation of ratios as in Eq. (14) is convenient for many reasons: it
should improve the statistical fluctuations, it might contain cancellations for cutoff effects and higher
order terms in the SFTX, and it could additionally present advantages in terms of the perturbative
matching [1]. Finally, ratios of flowed moments do not need the calculation of ringed fields with
the UV divergences canceling out. This implies that numerically we calculate ratios of correlation
functions (15) with different 𝑛.

The correlation function for generic 𝑛 and generic Lorentz indices 𝜇1𝜇2...𝜇𝑛 that contributes
to Eq. (15) can be written contracting the fermion fields as

𝐶
3pt
𝜇1...𝜇𝑛 (𝑥4, 𝑦4; 𝑡) = −𝑎6

∑︁
y,x

〈
tr

{
𝛾5𝑆𝑑 (0, 𝑥)𝛾5 𝑎

4
∑︁
𝑤

𝑆𝑢 (𝑥, 𝑤)𝐾 (𝑦, 𝑤; 𝑡, 0)†Γ𝑛 (𝑦, 𝑡) ×

× 𝑎4
∑︁
𝑣

𝐾 (𝑦, 𝑣; 𝑡, 0)𝑆𝑢 (𝑣, 0)
}〉

G

, (24)

where 𝑆𝑢,𝑑 (𝑦, 0) is the 𝑢 (or 𝑑) quark propagator from 0 to 𝑦, and the subscript G indicates the
gauge average. To compute the remaining contributions one first computes the sequential propagator
Σ𝑢𝑑 (𝑦, 0; 𝑡𝑠) = 𝑎3 ∑

x 𝑆𝑢 (𝑦, 𝑥𝑠)𝛾5𝑆𝑑 (𝑥𝑠, 0) as solution of the equation

𝑎
∑︁
𝑣

𝐷𝑢 (𝑥, 𝑣)Σ𝑢𝑑 (𝑣, 0; 𝑡𝑠) = 𝛾5𝑆𝑑 (𝑥, 0)𝛿𝑥4𝑡𝑠 , (25)

where 𝑥4 = 𝑡𝑠 is the fixed time location of the sink, 𝑥𝑠 = (x, 𝑡𝑠). The twist-2 operators for generic
𝑛 and generic Lorentz indices are denoted with Γ𝑛 (𝑦, 𝑡) = 𝛾𝜇1

↔
𝐷𝜇2 · · ·

↔
𝐷𝜇𝑛 that indicates where the

operator is inserted, 𝑦 = (y, 𝜏), and its flow-time, 𝑡, dependence. The flowed propagator

𝑆𝑢 (𝑦, 0; 𝑡) = 𝑎4
∑︁
𝑣

𝐾 (𝑦, 𝑣; 𝑡, 0)𝑆𝑢 (𝑣, 0) , (26)

is obtained solving the GF equation with initial condition 𝑆𝑢 (𝑦, 0). The other contribution to the
correlation is obtained solving the GF equation{

(𝜕𝑡 − Δ𝑦)Σ𝑢𝑑 (𝑦, 0; 𝑡𝑠; 𝑡) = 0

Σ𝑢𝑑 (𝑦, 0; 𝑡𝑠; 𝑡 = 0) = Σ𝑢𝑑 (𝑦, 0; 𝑡𝑠) ,
(27)

where the initial condition is the generalized propagator. The correlation function (24) can then be
evaluated with

𝐶
3pt
𝜇1...𝜇𝑛 (𝑡𝑠, 𝜏; 𝑡) = −𝑎3

∑︁
y

〈
tr
{
Σ
†
𝑢𝑑
(0, 𝑦; 𝑡𝑠; 𝑡)𝛾5Γ𝑛 (𝑦, 𝑡)𝑆𝑢 (𝑦, 0; 𝑡)

}〉
G
. (28)

Eq. (28) contains 4𝑛−1 terms due to the stacked symmetric covariant derivatives, individually
defined as

𝜙(𝑥)
↔
𝐷𝜇𝜙(𝑥) =

1
2
𝜙(𝑥)

(
→
𝐷𝜇 −

←
𝐷𝜇

)
𝜙(𝑥) (29)

=
1

4𝑎

(
𝜙(𝑥)𝑈𝜇 (𝑥)𝜙(𝑥 + 𝑎�̂�) − 𝜙(𝑥)𝑈†𝜇 (𝑥 − 𝑎�̂�)𝜙(𝑥 − 𝑎�̂�)

− 𝜙(𝑥 + 𝑎�̂�)𝑈†𝜇 (𝑥)𝜙(𝑥) + 𝜙(𝑥 − 𝑎�̂�)𝑈𝜇 (𝑥 − 𝑎�̂�)𝜙(𝑥)
)
, (30)
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where to simplify the notation we consider the derivative to act on generic fields 𝜙 and 𝜙. This
results in a high contraction cost as 𝑛 increases. To reduce that, we note that the two terms in

←−
𝐷 𝜇

(last line) are the same as those in
−→
𝐷 𝜇, except the one with the gauge link pointing to the forward

𝜇-direction is shifted by +𝜇, and the one with the gauge link pointing to the backward 𝜇-direction
is shifted by −�̂�. This is of course true for any number of derivatives, i.e., we can always obtain the
terms in

𝜙(𝑥)
↔
𝐷𝜇2 · · ·

←
𝐷𝜇𝑖 · · ·

↔
𝐷𝜇𝑛𝜙(𝑥) (31)

from the terms in
𝜙(𝑥)

↔
𝐷𝜇2 · · ·

→
𝐷𝜇𝑖 · · ·

↔
𝐷𝜇𝑛𝜙(𝑥) (32)

by appropriately shifting each term. That means that we only need to compute the 2𝑛−1 terms in

𝜙(𝑥)
→
𝐷𝜇2 · · ·

→
𝐷𝜇𝑛𝜙(𝑥) (33)

and then reconstruct the full
𝜙(𝑥)

↔
𝐷𝜇2 · · ·

↔
𝐷𝜇𝑛𝜙(𝑥) (34)

by shifting and linearly combining these terms.
For the 3-point function (28), this can be written compactly by first defining:

P1
𝜇𝑆𝑢 (𝑥, 0; 𝑡) ≡ 𝑈𝜇 (𝑥)𝑆𝑢 (𝑥 + 𝑎�̂�, 0; 𝑡) , (35)

P0
𝜇𝑆𝑢 (𝑥, 0; 𝑡) ≡ −𝑈†𝜇 (𝑥 − 𝑎�̂�)𝑆𝑢 (𝑥 − 𝑎�̂�, 0; 𝑡) . (36)

C𝜇1𝜇2...𝜇𝑛 (𝑡𝑠, 𝜏; 𝑡; ℓ2..., ℓ𝑛) = −𝑎3
∑︁

y

〈
tr
{
Σ
†
𝑢𝑑
(0, 𝑦; 𝑡𝑠; 𝑡)𝛾5𝛾𝜇1Pℓ2

𝜇2
Pℓ3
𝜇3 ...P

ℓ𝑛
𝜇𝑛
𝑆𝑢 (𝑦, 0; 𝑡)

}〉
G
, (37)

where ℓ𝑖 ∈ {1, 0}. Eq. (28) can then be written as

𝐶
3-pt
𝜇1...𝜇𝑛 (𝑡𝑠, 𝜏; 𝑡) = (38)

1
2𝑛−1

∑︁
ℓ𝑖∈{1,0}

1
(2𝑎)𝑛4

𝑛4∑︁
𝑘=0

(
𝑛4

𝑘

)
C𝜇1𝜇2...𝜇𝑛

(
𝑡𝑠, 𝜏 − Δ𝜏(𝜇2, ..., 𝜇𝑛; ℓ2, ..., ℓ𝑛) + 𝑘; 𝑡; ℓ2, ℓ3, ..., ℓ𝑛

)
,

where
Δ𝜏(𝜇2, ..., 𝜇𝑛; ℓ2, ..., ℓ𝑛) =

∑︁
𝑖 with 𝜇𝑖=4

ℓ𝑖 , (39)

and 𝑛4 is the number of covariant derivatives with temporal indices.
For covariant derivatives with 𝜇𝑖 ∈ {1, 2, 3}, shifting and linearly combining terms is unnec-

essary; after projecting into definite 3-momentum, the terms in Eq. (31) are numerically identical
to those in Eq. (32) up to an overall phase, which is unity in the zero-momentum case considered
here. Thus, to reconstruct the full three-point function, it is sufficient to compute only 2𝑛4 terms.

Further optimization can be achieved, especially when calculating multiple Mellin moments 𝑛,
by sorting the operators with distinct indices via a depth-first search algorithm. Intermediate results
can then be reused effectively—for example, P1𝑆 can be reused within expressions like P1P1𝑆.
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label 𝑎 (fm) 𝑡0/𝑎2 𝛽 𝜅𝑢𝑑 = 𝜅𝑠 dimension Ncfg

a12m412_mL6.0 0.12 1.48554(43) 3.685 0.1394305 96 × 243 119
a094m412_mL6.2 0.094 2.44003(79) 3.8 0.138963 96 × 323 210
a077m412_mL7.7 0.077 3.6200(10) 3.9 0.138603 96 × 483 200
a064m412_mL6.4 0.064 5.2425(21) 4.0 0.138272 96 × 483 200

Table 1: Details of the SWF lattice ensembles adopted for this numerical test. All the ensembles have been
generated at the 𝑆𝑈 (3) flavor symmetric point, i.e. all 3 quark masses are degenerate and have been tuned
such that the pseudoscalar mass is ≃ 411 MeV. The listed values of 𝑡0/𝑎2 with corresponding uncertainties
are preliminary and have been computed using a larger set of gauge configurations.

4. Preliminary results
The 3-point functions are computed as described in the previous section on four 𝑆𝑈 (3)-flavor-

symmetric ensembles with Stabilized Wilson Fermions (SWF) [27] generated by the OpenLat
initiative [23, 24, 28, 29] with fixed pseudoscalar mass, 𝑚𝜋 ≃ 411 MeV and four different lattice
spacings ranging between 𝑎 ≃ 0.064 fm and 𝑎 ≃ 0.12 fm. The ensemble parameters, along
with the number of configurations used for each, are tabulated in Table 1. The scale is set using
the gradient flow, and converted to fm via

√
8𝑡0 = 0.4091(25) fm [30]. We use one stochastic

source per configuration, with source locations randomly sampled from a uniform 4D probability
distribution, and a single sequential source at sink time 𝑡𝑠 = 40𝑎. The measurement is done for
flow times up to 𝑡/𝑎2 = 4.3 for a12m412_mL6.0, 𝑡/𝑎2 = 7.0 for a094m412_mL6.2, 𝑡/𝑎2 = 10.0
for a077m412_mL7.7, and 𝑡/𝑎2 = 11.7 for a064m412_mL6.4, to cover a range up to approximately
𝑡/𝑡0 ∼ 2.5 − 3.0 for all ensembles. Reweighting factors are calculated stochastically and bootstrap
resampling with 500 bootstrap samples is used to determine the statistical uncertainties.

In Fig. 1, we show the two ratios of three-point functions as functions of the flow time in units
of 𝑡0

−
𝑐2(𝑡, 𝜇)𝐶3-pt

𝑛=3(𝑡)

𝑚𝜋𝑐3(𝑡, 𝜇)𝐶3-pt
𝑛=2(𝑡)

,
𝑐2(𝑡, 𝜇)𝐶3-pt

𝑛=4(𝑡)
𝑚2

𝜋𝑐4(𝑡, 𝜇)𝐶3-pt
𝑛=2(𝑡)

, (40)

with a fixed source-sink separation of 𝑡𝑠 = 40𝑎 and fixed operator insertion time of 𝜏 = 20𝑎.
When the ratios of 3-point functions are multiplied by the NLO perturbative matching factors,
𝑐𝑛 (𝑡, 𝜇 = 2 GeV) from Eq. (8), and normalized by appropriate powers of 𝑚𝜋 , they correspond
respectively to

⟨𝑥2⟩
⟨𝑥⟩ ,

⟨𝑥3⟩
⟨𝑥⟩ at MS, 𝜇 = 2 GeV , (41)

after taking the continuum limit, up to a residual flow-time dependence from higher-dimensional
operators. In the matching coefficients, we have used 𝛼S(𝜇 = 2 GeV) = 0.3069 determined using
the RunDec package [31]. These ratios show a very smooth dependence on the flow time, which
is promising for the extrapolation to 𝑡 → 0 needed to determine the moments in the MS scheme.
As expected, we observe more pronounced cutoff effects at shorter flow times, with these effects
appearing at smaller 𝑡/𝑡0 for the finer ensembles. For lattice spacings 𝑎 ≲ 0.094 fm, the cutoff
effects remain minimal over a wide range of 𝑡/𝑡0. Preliminary observations suggest that, at fixed
lattice spacing, the range where short-distance discretization errors impact the flow time dependence
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shifts to larger 𝑡/𝑡0 values for higher moments. This is likely due to the larger time extent, in lattice
units, of the twist-2 local operators.

In Fig. 1, we compare against calculations of the same quantities presented in Refs. [32, 33],
which were obtained with 𝑁 𝑓 = 2+1+1 flavors of twisted-mass fermions and a lighter pion mass of
𝑚𝜋 ≃ 260 MeV. These results were obtained with the canonical approach of choosing irreducible
representations of the hypercubic group H(4) for which boosting the 3-point functions in one or more
directions is necessary in order to avoid mixing with lower-dimensional operators. Due to the noise
introduced from boosting, this requires a much larger number of measurements; indeed, the results
we compare against used 𝑁cfg × 𝑁source = 3904 for ⟨𝑥2⟩ [32] and 𝑁cfg × 𝑁source × 𝑁boost = 15 − 70k
for ⟨𝑥3⟩ [33]. The method studied in this work achieves over twice the precision with only 100−200
measurements, thanks to the favorable noise properties of the unboosted three-point functions
and the suppression of ultraviolet fluctuations via the gradient flow. Preliminary results suggest
that, assuming an equivalent number of independent measurements, statistical errors with the new
method could be reduced by a factor of ∼ 10 for ⟨𝑥2⟩ and by a factor ∼ 40 for ⟨𝑥3⟩. Any tension with
the older results may stem from the different quark masses used. These will be investigated through
a comprehensive analysis of the three-point functions at various sink and operator insertion times,
along with an assessment of the residual flow time dependence of the ratios, in our forthcoming
publication.

The new method resolves also the problem of power divergences. In Fig. 2 we show examples
of the Euclidean time dependence of the correlation functions in Eq. (15) corresponding to the ratios〈
𝑥4〉 /⟨𝑥⟩ and

〈
𝑥5〉 /⟨𝑥⟩. These results, albeit preliminary, are very encouraging showing that, at

least in the pseudoscalar channel, the method promises a precise reconstruction of the full PDF.

5. Conclusion

We have performed the first numerical investigation of the recently proposed method [1] to
obtain precise ratios of arbitrary-order moments of PDFs. We present preliminary results for the
ratios ⟨𝑥2⟩ /⟨𝑥⟩ and ⟨𝑥3⟩ /⟨𝑥⟩ in the MS scheme at 𝜇 = 2 GeV. As a testing ground we have
considered PDFs of the pseudoscalar meson using four OpenLat ensembles with 𝑚𝜋 ≃ 411 MeV.
We find that this method achieves significantly higher precision, requiring approximately 20 times
fewer measurements for ⟨𝑥2⟩ /⟨𝑥⟩ and about 350 times fewer measurements for ⟨𝑥3⟩ /⟨𝑥⟩ compared
to the current state-of-the-art lattice QCD results for these quantities. We have also shown that the
method allows to solve the problem of the power divergences and allows to calculate moments up
to

〈
𝑥5〉 with a very moderate computational effort. These preliminary results seem to give first

indication that the continuum and 𝑡 → 0 limits should be well under control. Additional systematics
can arise from excited state contamination. All these questions will be addressed in the upcoming
publication where we will increase our statistics, and compute additional source-sink separations
for all the ensembles. After performing the continuum limit at fixed flow time in physical units
we will extrapolate the residual flow time dependence. We have shown first results also for higher
moments such as ⟨𝑥4⟩ and ⟨𝑥5⟩ and we plan to finalize the analysis to attempt the reconstruction of
the PDF based on these moments.
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Figure 1: Flow time dependence of ratios of moments of parton distribution functions. Different colors
correspond to different lattice spacings. The lattice QCD results are shown in the MS scheme after the NLO
matching. For comparison we show results obtained in Ref. [32] (top panel), and in Ref. [33] (middle and
bottom panel).
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Figure 2: Euclidean time dependence of ratios of correlation functions in Eq. (15) corresponding to
〈
𝑥4〉 /⟨𝑥⟩

and
〈
𝑥5〉 /⟨𝑥⟩ computed at a fixed flow time using ensemble a064m412_mL6.4. The numerical results are

matched to represent the ratios in the MS scheme at scale 𝜇 = 2 GeV.
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