001037143 001__ 1037143
001037143 005__ 20250203103158.0
001037143 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00490
001037143 037__ $$aFZJ-2025-00490
001037143 041__ $$aEnglish
001037143 1001_ $$0P:(DE-Juel1)196090$$aVisser, Lino$$b0$$eCorresponding author$$ufzj
001037143 1112_ $$aSilicon Quantum Electronics Workshop 2024$$cDavos$$d2024-09-04 - 2024-09-06$$gSiQEW 2024$$wSwitzerland
001037143 245__ $$aTwo-stage magnetic shielding for hybrid quantum devices in an adiabatic demagnetization refrigerator
001037143 260__ $$c2024
001037143 3367_ $$033$$2EndNote$$aConference Paper
001037143 3367_ $$2BibTeX$$aINPROCEEDINGS
001037143 3367_ $$2DRIVER$$aconferenceObject
001037143 3367_ $$2ORCID$$aCONFERENCE_POSTER
001037143 3367_ $$2DataCite$$aOutput Types/Conference Poster
001037143 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1737034070_12707$$xAfter Call
001037143 520__ $$aAdiabatic demagnetization refrigeration (ADR) is a promising cooling technique for future quantum technology applications. Cooling units for ADRs are cheap and reliable while enabling base temperatures comparable to those obtained in dilution refrigerators. A challenge is the presence residual magnetic fields originating from the magnet used for recharging the paramagnetic salts, as these lower the operation fidelity of superconducting circuits.With the advance of spin qubits and the recent demonstration of long-range coupling by superconducting resonators[1,2], controlling the magnetic environment is crucial. Further, controlling this is beneficial to operate spin qubits at low fields[3] or to implement superconducting-semiconducting hybrid devices in Germanium quantum wells[4,5].Here, we present the design of a 4 Kelvin two-stage mu-metal and Niobium magnetic shield[6] with ports for 4 superconducting RF wires, and 48 DC lines. The lowest temperature stage enters the magnetic shield through a feedthrough and contains an additional Copper radiation shield[7] around the sample space. Using finite element simulations, we quantify the magnetic shielding factor before manufacturing.To benchmark the ADRs shielding performance, we characterize a set of Niobium resonators, measuring their quality factors. First results indicate a competitive performance of these resonators in our customized set-up. To operate spin qubits, we plan on implementing a small superconducting magnet to control the field locally. We aim to achieve a reduced background field, magnetic field noise and avoid field exposure while recharging the salt pill. [1] P. Harvey-Collard et al. Phys. Rev. X 12, 021026[2] F. Borjans et al. Nature 577, 195–198 (2020)[3] D Jirovec et al. Nat. Mater. 20, 1106–1112 (2021)[4] O. Sagi et al. arXiv:2403.16774[5] A. Tosato et al. Commun Mater 4, 23 (2023)[6] A. Bergen et al. Rev Sci Instrum. 2016 Oct;87(10):105109[7] R. Barends et al. Appl. Phys. Lett. 99, 113507 (2011)
001037143 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001037143 536__ $$0G:(BMBF)390534769$$aEXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
001037143 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001037143 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
001037143 7001_ $$0P:(DE-Juel1)184428$$aNeis, Marc$$b1$$ufzj
001037143 7001_ $$0P:(DE-Juel1)190989$$aGuimaraes, Jeferson R.$$b2$$ufzj
001037143 7001_ $$0P:(DE-Juel1)178064$$aJerger, Markus$$b3$$ufzj
001037143 7001_ $$0P:(DE-Juel1)180350$$aBushev, Pavel$$b4$$ufzj
001037143 7001_ $$0P:(DE-Juel1)190190$$aBarends, Rami$$b5$$ufzj
001037143 7001_ $$0P:(DE-Juel1)190990$$aMourik, Vincent$$b6$$ufzj
001037143 8564_ $$uhttps://siqew2024.ch/wp-content/uploads/program-posters-v2/index-session-2.html
001037143 8564_ $$uhttps://juser.fz-juelich.de/record/1037143/files/SiQEW%202024%20Poster%20Lino%20Visser.pdf$$yOpenAccess
001037143 909CO $$ooai:juser.fz-juelich.de:1037143$$pdriver$$pVDB$$popen_access$$popenaire
001037143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196090$$aForschungszentrum Jülich$$b0$$kFZJ
001037143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184428$$aForschungszentrum Jülich$$b1$$kFZJ
001037143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190989$$aForschungszentrum Jülich$$b2$$kFZJ
001037143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178064$$aForschungszentrum Jülich$$b3$$kFZJ
001037143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180350$$aForschungszentrum Jülich$$b4$$kFZJ
001037143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190190$$aForschungszentrum Jülich$$b5$$kFZJ
001037143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190990$$aForschungszentrum Jülich$$b6$$kFZJ
001037143 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001037143 9141_ $$y2024
001037143 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037143 920__ $$lyes
001037143 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001037143 980__ $$aposter
001037143 980__ $$aVDB
001037143 980__ $$aUNRESTRICTED
001037143 980__ $$aI:(DE-Juel1)PGI-11-20170113
001037143 9801_ $$aFullTexts