001     1037143
005     20250203103158.0
024 7 _ |a 10.34734/FZJ-2025-00490
|2 datacite_doi
037 _ _ |a FZJ-2025-00490
041 _ _ |a English
100 1 _ |a Visser, Lino
|0 P:(DE-Juel1)196090
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Silicon Quantum Electronics Workshop 2024
|g SiQEW 2024
|c Davos
|d 2024-09-04 - 2024-09-06
|w Switzerland
245 _ _ |a Two-stage magnetic shielding for hybrid quantum devices in an adiabatic demagnetization refrigerator
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1737034070_12707
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Adiabatic demagnetization refrigeration (ADR) is a promising cooling technique for future quantum technology applications. Cooling units for ADRs are cheap and reliable while enabling base temperatures comparable to those obtained in dilution refrigerators. A challenge is the presence residual magnetic fields originating from the magnet used for recharging the paramagnetic salts, as these lower the operation fidelity of superconducting circuits.With the advance of spin qubits and the recent demonstration of long-range coupling by superconducting resonators[1,2], controlling the magnetic environment is crucial. Further, controlling this is beneficial to operate spin qubits at low fields[3] or to implement superconducting-semiconducting hybrid devices in Germanium quantum wells[4,5].Here, we present the design of a 4 Kelvin two-stage mu-metal and Niobium magnetic shield[6] with ports for 4 superconducting RF wires, and 48 DC lines. The lowest temperature stage enters the magnetic shield through a feedthrough and contains an additional Copper radiation shield[7] around the sample space. Using finite element simulations, we quantify the magnetic shielding factor before manufacturing.To benchmark the ADRs shielding performance, we characterize a set of Niobium resonators, measuring their quality factors. First results indicate a competitive performance of these resonators in our customized set-up. To operate spin qubits, we plan on implementing a small superconducting magnet to control the field locally. We aim to achieve a reduced background field, magnetic field noise and avoid field exposure while recharging the salt pill. [1] P. Harvey-Collard et al. Phys. Rev. X 12, 021026[2] F. Borjans et al. Nature 577, 195–198 (2020)[3] D Jirovec et al. Nat. Mater. 20, 1106–1112 (2021)[4] O. Sagi et al. arXiv:2403.16774[5] A. Tosato et al. Commun Mater 4, 23 (2023)[6] A. Bergen et al. Rev Sci Instrum. 2016 Oct;87(10):105109[7] R. Barends et al. Appl. Phys. Lett. 99, 113507 (2011)
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 1
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Neis, Marc
|0 P:(DE-Juel1)184428
|b 1
|u fzj
700 1 _ |a Guimaraes, Jeferson R.
|0 P:(DE-Juel1)190989
|b 2
|u fzj
700 1 _ |a Jerger, Markus
|0 P:(DE-Juel1)178064
|b 3
|u fzj
700 1 _ |a Bushev, Pavel
|0 P:(DE-Juel1)180350
|b 4
|u fzj
700 1 _ |a Barends, Rami
|0 P:(DE-Juel1)190190
|b 5
|u fzj
700 1 _ |a Mourik, Vincent
|0 P:(DE-Juel1)190990
|b 6
|u fzj
856 4 _ |u https://siqew2024.ch/wp-content/uploads/program-posters-v2/index-session-2.html
856 4 _ |u https://juser.fz-juelich.de/record/1037143/files/SiQEW%202024%20Poster%20Lino%20Visser.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037143
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184428
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190989
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)178064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180350
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)190190
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)190990
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21