001     1037157
005     20250203124514.0
024 7 _ |a 10.1016/j.celrep.2024.114448
|2 doi
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00502
|2 datacite_doi
024 7 _ |a 39003740
|2 pmid
024 7 _ |a WOS:001270335000001
|2 WOS
037 _ _ |a FZJ-2025-00502
082 _ _ |a 610
100 1 _ |a Busley, Alexandra Viktoria
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mutation-induced LZTR1 polymerization provokes cardiac pathology in recessive Noonan syndrome
260 _ _ |a Maryland Heights, MO
|c 2024
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736774567_16364
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1L580P by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1L580P-specific disease mechanism provoking cardiac hypertrophy. The variant is predicted to alter the binding affinity of the dimerization domains facilitating the formation of linear LZTR1 polymers. LZTR1 complex dysfunction results in the accumulation of RAS GTPases, thereby provoking global pathological changes of the proteomic landscape ultimately leading to cellular hypertrophy. Furthermore, our data show that cardiomyocyte-specific MRAS degradation is mediated by LZTR1 via non-proteasomal pathways, whereas RIT1 degradation is mediated by both LZTR1-dependent and LZTR1-independent pathways. Uni- or biallelic genetic correction of the LZTR1L580P missense variant rescues the molecular and cellular disease phenotype, providing proof of concept for CRISPR-based therapies.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gutiérrez-Gutiérrez, Óscar
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hammer, Elke
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Koitka, Fabian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mirzaiebadizi, Amin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Steinegger, Martin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pape, Constantin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Böhmer, Linda
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schroeder, Henning
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kleinsorge, Mandy
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Engler, Melanie
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Cirstea, Ion Cristian
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 12
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 13
|u fzj
700 1 _ |a Altmüller, Janine
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Marbach, Felix
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Hasenfuss, Gerd
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Zimmermann, Wolfram-Hubertus
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Ahmadian, Mohammad Reza
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Wollnik, Bernd
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Cyganek, Lukas
|0 0000-0001-9120-1382
|b 20
|e Corresponding author
773 _ _ |a 10.1016/j.celrep.2024.114448
|g Vol. 43, no. 7, p. 114448 -
|0 PERI:(DE-600)2649101-1
|n 7
|p 114448 -
|t Cell reports
|v 43
|y 2024
|x 2211-1247
856 4 _ |u https://juser.fz-juelich.de/record/1037157/files/1-s2.0-S2211124724007770-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037157
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2022
|d 2024-12-16
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:49:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:49:39Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:49:39Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21