Home > Publications database > EAP4EMSIG -- Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cells Analysis > print |
001 | 1037178 | ||
005 | 20250203103202.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2411.05030 |2 doi |
037 | _ | _ | |a FZJ-2025-00523 |
100 | 1 | _ | |a Friederich, Nils |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a EAP4EMSIG -- Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cells Analysis |
260 | _ | _ | |c 2024 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1736837909_18518 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
500 | _ | _ | |a arXiv, arXiv:2411.05030 [q-bio.QM] |
520 | _ | _ | |a Microfluidic Live-Cell Imaging (MLCI) generates high-quality data that allows biotechnologists to study cellular growth dynamics in detail. However, obtaining these continuous data over extended periods is challenging, particularly in achieving accurate and consistent real-time event classification at the intersection of imaging and stochastic biology. To address this issue, we introduce the Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cells Analysis (EAP4EMSIG). In particular, we present initial zero-shot results from the real-time segmentation module of our approach. Our findings indicate that among four State-Of-The- Art (SOTA) segmentation methods evaluated, Omnipose delivers the highest Panoptic Quality (PQ) score of 0.9336, while Contour Proposal Network (CPN) achieves the fastest inference time of 185 ms with the second-highest PQ score of 0.8575. Furthermore, we observed that the vision foundation model Segment Anything is unsuitable for this particular use case. |
536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Quantitative Methods (q-bio.QM) |2 Other |
650 | _ | 7 | |a Computer Vision and Pattern Recognition (cs.CV) |2 Other |
650 | _ | 7 | |a Image and Video Processing (eess.IV) |2 Other |
650 | _ | 7 | |a FOS: Biological sciences |2 Other |
650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
650 | _ | 7 | |a FOS: Electrical engineering, electronic engineering, information engineering |2 Other |
700 | 1 | _ | |a Yamachui Sitcheu, A. J. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Nassal, Annika |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Pesch, Matthias |0 P:(DE-Juel1)199011 |b 3 |u fzj |
700 | 1 | _ | |a Yildiz, Erenus |b 4 |
700 | 1 | _ | |a Beichter, Maximilian |b 5 |
700 | 1 | _ | |a Scholtes, Lukas |0 P:(DE-Juel1)173690 |b 6 |u fzj |
700 | 1 | _ | |a Akbaba, Bahar |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Lautenschlager, Thomas |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Neumann, Oliver |b 9 |
700 | 1 | _ | |a Kohlheyer, Dietrich |0 P:(DE-Juel1)140195 |b 10 |u fzj |
700 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 11 |u fzj |
700 | 1 | _ | |a Seiffarth, Johannes |b 12 |
700 | 1 | _ | |a Nöh, Katharina |0 P:(DE-Juel1)129051 |b 13 |u fzj |
700 | 1 | _ | |a Mikut, Ralf |0 P:(DE-HGF)0 |b 14 |
773 | _ | _ | |a 10.48550/ARXIV.2411.05030 |
909 | C | O | |o oai:juser.fz-juelich.de:1037178 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)199011 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)173690 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)140195 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)129394 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)129051 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
914 | 1 | _ | |y 2024 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 1 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|