001037179 001__ 1037179
001037179 005__ 20250203215420.0
001037179 0247_ $$2doi$$a10.1021/acs.jctc.3c01333
001037179 0247_ $$2ISSN$$a1549-9618
001037179 0247_ $$2ISSN$$a1549-9626
001037179 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00524
001037179 0247_ $$2pmid$$a38718349
001037179 0247_ $$2WOS$$aWOS:001225225200001
001037179 037__ $$aFZJ-2025-00524
001037179 082__ $$a610
001037179 1001_ $$00000-0002-2474-5053$$aAntila, Hanne S.$$b0$$eCorresponding author
001037179 245__ $$aEvaluating Polarizable Biomembrane Simulations against Experiments
001037179 260__ $$aWashington, DC$$b[Verlag nicht ermittelbar]$$c2024
001037179 3367_ $$2DRIVER$$aarticle
001037179 3367_ $$2DataCite$$aOutput Types/Journal article
001037179 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738571050_780
001037179 3367_ $$2BibTeX$$aARTICLE
001037179 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037179 3367_ $$00$$2EndNote$$aJournal Article
001037179 520__ $$aOwing to the increase of available computational capabilities and the potential for providing a more accurate description, polarizable molecular dynamics force fields are gaining popularity in modeling biomolecular systems. It is, however, crucial to evaluate how much precision is truly gained with increasing cost and complexity of the simulation. Here, we leverage the NMRlipids open collaboration and Databank to assess the performance of available polarizable lipid models─the CHARMM-Drude and the AMOEBA-based parameters─against high-fidelity experimental data and compare them to the top-performing nonpolarizable models. While some improvement in the description of ion binding to membranes is observed in the most recent CHARMM-Drude parameters, and the conformational dynamics of AMOEBA-based parameters are excellent, the best nonpolarizable models tend to outperform their polarizable counterparts for each property we explored. The identified shortcomings range from inaccuracies in describing the conformational space of lipids to excessively slow conformational dynamics. Our results provide valuable insights for the further refinement of polarizable lipid force fields and for selecting the best simulation parameters for specific applications.
001037179 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001037179 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037179 7001_ $$0P:(DE-HGF)0$$aDixit, Sneha$$b1
001037179 7001_ $$0P:(DE-Juel1)178946$$aKav, Batuhan$$b2$$eCorresponding author
001037179 7001_ $$00000-0003-1411-9080$$aMadsen, Jesper J.$$b3
001037179 7001_ $$00000-0002-3999-4722$$aMiettinen, Markus S.$$b4
001037179 7001_ $$00000-0002-8728-1006$$aOllila, O. H. Samuli$$b5
001037179 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.3c01333$$gVol. 20, no. 10, p. 4325 - 4337$$n10$$p4325 - 4337$$tJournal of chemical theory and computation$$v20$$x1549-9618$$y2024
001037179 8564_ $$uhttps://juser.fz-juelich.de/record/1037179/files/antila-et-al-2024-evaluating-polarizable-biomembrane-simulations-against-experiments.pdf$$yOpenAccess
001037179 909CO $$ooai:juser.fz-juelich.de:1037179$$pVDB$$popen_access$$pdnbdelivery$$pdriver$$popenaire
001037179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178946$$aForschungszentrum Jülich$$b2$$kFZJ
001037179 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001037179 9141_ $$y2024
001037179 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001037179 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001037179 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037179 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
001037179 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2022$$d2024-12-12
001037179 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
001037179 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001037179 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037179 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2022$$d2024-12-12
001037179 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
001037179 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001037179 920__ $$lyes
001037179 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001037179 980__ $$ajournal
001037179 980__ $$aVDB
001037179 980__ $$aI:(DE-Juel1)IBI-7-20200312
001037179 980__ $$aUNRESTRICTED
001037179 9801_ $$aFullTexts