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The Objective

Develop a methodology to compare the I/O behavior of multiple user programs resulting from 
different configuration options.

The methodology should work:

• For arbitrary user programs without modifying them (e.g., even if the code is within a container, 
without MPI_Init).

• Without necessarily depending on data that only admins can provide (to facilitate portability 
between sites).

• With capabilities to be integrated with existing frameworks such as Darshan and Score-P. 
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strace [COMMAND]

Example:

Basic Usage:

Tracing System Calls with STrace
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Example:

Tracing System Calls with STrace

strace –f –tt –T –y –e read,write ls
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Example:

Tracing System Calls with STrace

Trace file: host_9042.st

srun –n 3 strace –f –tt –T –y –e read,write –o $hostname_$$.st ls

host_9042.st

host_9043.st

host_9044.st
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The Challenge: Extracting Information from System Traces

Challenge: How do you extract useful information from large amounts of 
information in the system call traces? 
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Typical questions one could ask looking at the above data:

• What is the total read time in the $SOFTWARE directory, i.e., under /p/software?

• What is the rate of data movements in the $PROJECT directory, i.e., under /p/project?

The Challenge: Extracting Information from System Traces
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read+/p/software

read+/p/software

read+/usr/lib64

Idea: Map Trace Events to Activities

Activity

Idea: 

• Map each row to a string that helps answer your question. We call this string “Activity”.
• Apply grouping based on activities and compute statistics. 
• Identify the directly-follows relation between the activities to build a Directly-Follows-Graph 

(DFG). 
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read+/usr/lib64

Activity

• This data is can be formalized as an event-log in Process Mining.

• Process mining introduces scalable techniques to translate event logs into different types of 
dependency graphs, including Directly-Follows Graph.

• Ref: W. M. P. Van Der Aalst, “Foundations of process discovery,” in Process Mining Handbook, DOI: 
https://doi.org/10.1007/978-3-031-08848-3_2

Event-Log in Process Mining

read+/p/software

read+/p/software
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P0.strace.log P1.strace.log

Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

write+$PROJECT

write+$SCRATCH

Construction of Directly-Follows Graph
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Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

read+$PROJECT

write+$PROJECT

P0 P1

Construction of Directly-Follows Graph
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Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

read+$PROJECT

write+$PROJECT
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Construction of Directly-Follows Graph
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P0.strace.log P1.strace.log

Composing Strace Logs into a DFG

Logs from multiple processes are transformed into one DFG.
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Usage

srun -n [N] [OPTIONS]  ./strace.sh [COMMAND 1]

srun –n [N] [OPTIONS]  ./strace.sh [COMMAND 2]

strace logs stored in user space

ssh tunnel

Prefix your executable with the tracer. 

Interactive dashboard
for trace inspection
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IOR Example 1: File per Process vs Single Shared File

We trace IOR benchmark (on 96 cores) with the following configurations:

• All process write to a single shared file in the directory $SCRATCH/ssf
• All process write to its own file in the directory $SCRATCH/fpp
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A Peek into the Dashboard

2
2
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IOR Example 1: File per Process vs Single Shared File

The combined DFG for both runs: 
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IOR Example 1: File per Process vs Single Shared File

Focus on $SCRATCH by redefining ‘activity’
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IOR Example 1: File per Process vs Single Shared File

Focus on $SCRATCH by redefining ‘activity’

Highlights the 
performance impacts of 
configuration choices 
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IOR Example 2: With and Without MPI-IO

Highlights the difference in I/O behavior through graph coloring. 
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Summary

• We presented a methodology to synthesize a DFG from traces of system calls.

• We showed the usage of the methodology in comparing I/O operations of 
arbitrary programs.

What next?

• Minimize the overheads in trace collection with SIONlib.

• Inspect real applications. 
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