
INSPECTION OF I/O OPERATIONS FROM SYSTEM CALL
TRACES USING DIRECTLY-FOLLOWS-GRAPH
NOV 18, 2024 I PROTOOLS SC-W 24, ATLANTA | A. SANKARAN1, I.ZHUKOV1, W.FRINGS1, P.BIENTINESI2

1 Jülich Supercomputing Center, Germany
2 Umea Universität, Sweden

2

The Objective

Develop a methodology to compare the I/O behavior of multiple user programs resulting from
different configuration options.

The methodology should work:

• For arbitrary user programs without modifying them (e.g., even if the code is within a container,
without MPI_Init).

• Without necessarily depending on data that only admins can provide (to facilitate portability
between sites).

• With capabilities to be integrated with existing frameworks such as Darshan and Score-P.

3

Libraries
e.g., STDIO, MPI-IO, HDF5, NetCDF, etc.

Operating Systems
OS 1 OS 2 OS n

Parallel File System
e.g., IBM Spectrum Scale, Lustre, BeeGFS

Interconnects

Parallel Applications

The I/O Stack

4

Libraries
e.g., STDIO, MPI-IO, HDF5, NetCDF, etc.

Operating Systems
OS 1 OS 2 OS n

Parallel File System
e.g., IBM Spectrum Scale, Lustre, BeeGFS

Interconnects

Parallel Applications

The I/O Stack

Requires
configuration

to

maximize
throughput.

5

Libraries
e.g., STDIO, MPI-IO, HDF5, NetCDF, etc.

Operating Systems
OS 1 OS 2 OS n

Parallel File System
e.g., IBM Spectrum Scale, Lustre, BeeGFS

Interconnects

Parallel Applications

The Data for Performance Analysis

Work only with
System calls.

6

strace [COMMAND]

Example:

Basic Usage:

Tracing System Calls with STrace

7

Example:

Tracing System Calls with STrace

strace –f –tt –T –y –e read,write ls

8

Example:

Tracing System Calls with STrace

Trace file: host_9042.st

srun –n 3 strace –f –tt –T –y –e read,write –o $hostname_$$.st ls

host_9042.st

host_9043.st

host_9044.st

9

The Challenge: Extracting Information from System Traces

Challenge: How do you extract useful information from large amounts of
information in the system call traces?

10

Typical questions one could ask looking at the above data:

• What is the total read time in the $SOFTWARE directory, i.e., under /p/software?

• What is the rate of data movements in the $PROJECT directory, i.e., under /p/project?

The Challenge: Extracting Information from System Traces

11

read+/p/software

read+/p/software

read+/usr/lib64

Idea: Map Trace Events to Activities

Activity

Idea:

• Map each row to a string that helps answer your question. We call this string “Activity”.
• Apply grouping based on activities and compute statistics.
• Identify the directly-follows relation between the activities to build a Directly-Follows-Graph

(DFG).

12

read+/usr/lib64

Activity

• This data is can be formalized as an event-log in Process Mining.

• Process mining introduces scalable techniques to translate event logs into different types of
dependency graphs, including Directly-Follows Graph.

• Ref: W. M. P. Van Der Aalst, “Foundations of process discovery,” in Process Mining Handbook, DOI:
https://doi.org/10.1007/978-3-031-08848-3_2

Event-Log in Process Mining

read+/p/software

read+/p/software

13

P0.strace.log P1.strace.log

Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

write+$PROJECT

write+$SCRATCH

Construction of Directly-Follows Graph

14

Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

read+$PROJECT

write+$PROJECT

P0 P1

Construction of Directly-Follows Graph

15

Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

read+$PROJECT

write+$PROJECT

P0 P1

Construction of Directly-Follows Graph

16

P0.strace.log P1.strace.log

Composing Strace Logs into a DFG

Logs from multiple processes are transformed into one DFG.

17

Usage

srun -n [N] [OPTIONS] ./strace.sh [COMMAND 1]

srun –n [N] [OPTIONS] ./strace.sh [COMMAND 2]

strace logs stored in user space

ssh tunnel

Prefix your executable with the tracer.

Interactive dashboard
for trace inspection

18

IOR Example 1: File per Process vs Single Shared File

We trace IOR benchmark (on 96 cores) with the following configurations:

• All process write to a single shared file in the directory $SCRATCH/ssf
• All process write to its own file in the directory $SCRATCH/fpp

19

A Peek into the Dashboard

2
2

20

IOR Example 1: File per Process vs Single Shared File

The combined DFG for both runs:

21

IOR Example 1: File per Process vs Single Shared File

Focus on $SCRATCH by redefining ‘activity’

22

IOR Example 1: File per Process vs Single Shared File

Focus on $SCRATCH by redefining ‘activity’

Highlights the
performance impacts of
configuration choices

23

IOR Example 2: With and Without MPI-IO

Highlights the difference in I/O behavior through graph coloring.

24

Summary

• We presented a methodology to synthesize a DFG from traces of system calls.

• We showed the usage of the methodology in comparing I/O operations of
arbitrary programs.

What next?

• Minimize the overheads in trace collection with SIONlib.

• Inspect real applications.

25

Acknowledgements

• This research was financially supported by the Juelich Supercomputing
Center at Forschungszentrum Juelich and the BMBF project 01-1H1-
6013 AP6 NRW Anwenderunterstutzung SiVeGCS.

• Additionally, supervision support from RWTH Aachen University through
the DFG project IRTG-2379 is gratefully acknowledged.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

