
Inspection of I/O Operations from System Call
Traces using Directly-Follows-Graph

Aravind Sankaran∗, Ilya Zhukov†, and Wolfgang Frings‡
Jülich Supercomputing Center

Forschungszentrum Jülich, Germany
{∗a.sankaran, †i.zhukov, ‡w.frings}@fz-juelich.de

Paolo Bientinesi
Department of Computer Science

Umeå Universitet, Sweden
pauldj@cs.umu.se

Abstract—We aim to identify the differences in Input/Output
(I/O) behavior between multiple user programs through the
inspection of system calls (i.e., requests made to the operating
system). A typical program issues a large number of I/O requests
to the operating system, thereby making the process of inspection
challenging. In this paper, we address this challenge by presenting
a methodology to synthesize I/O system call traces into a specific
type of directed graph, known as the Directly-Follows-Graph
(DFG). Based on the DFG, we present a technique to compare
the traces from multiple programs or different configurations
of the same program, such that it is possible to identify the
differences in the I/O behavior. We apply our methodology to the
IOR benchmark, and compare the contentions for file accesses
when the benchmark is run with different options for file output
and software interface.

Index Terms—High-Performance Computing, Performance
Analysis, Input/Output, strace, Directly-Follows Graph, Process
Mining

I. INTRODUCTION

The efficiency of a computer program is often inhibited
by contention for system resources. This issue is particularly
evident in programs that perform significant Input/Output (I/O)
operations on storage systems. In programs executed by users,
requests to access system resources happen through the oper-
ating system. In this paper, we aim to analyze arbitrary user
programs, without modifying them, in terms of I/O requests
made to the operating system.

A user program communicates with the operating system
by issuing system calls. The record of the sequence of system
calls made by the user program during its execution is referred
to as the system trace of that program. We analyze the
contentions for system resources in programs using the system
call traces. We consider the I/O-related system calls from
the traces of user programs, particularly the system calls on
LINUX-based operating systems that are implemented based
on the interfaces defined in the C standard library (libc) under
the headers unistd.h and sys/uio.h. Performing I/O accesses
directly by using the libc calls is time-consuming and one
requires an understanding of the system-specific programming
requirements; for example, when porting the code to a different

This research was financially supported by the Jülich Supercomputing
Center at Forschungszentrum Jülich and the BMBF project 01-1H1-6013 AP6-
NRW Anwenderunterstützung SiVeGCS. Additionally, supervision support
from RWTH Aachen University through the DFG project IRTG-2379 is
greatfully acknowledged.

architecture or a Linux variant, one may have to correctly
invoke the libc calls available for that system configuration
to make the I/O accesses efficient. Therefore, users typically
rely on standard I/O interfaces such as STDIO that manages
the libc calls under the hood1. Moreover, when it comes to
parallelization of I/O accesses, users rely on more high-level
interfaces (such as MPI-IO) and libraries (such as HDF5 [1]
and Parallel NetCDF [2]). The high-level interfaces are opti-
mized for ease of use, but when to comes to achieving optimal
efficiency, it has been noted that these interfaces should be
used with a configuration that is tuned to a setting that is
optimal for the concerned application [3], [4]. In the process
of tuning the I/O performance of a program, users must decide
not only on the choice of the interface and its configuration, but
also on several other parameters that should be set according
to requirements of the application. For example, it is important
to determine the pattern of file output: whether each process
should access its own file or if all processes should access a
single shared file. To understand the performance impacts of
the interface and configuration choices, users typically rely on
I/O profiling and tracing tools to analyze their programs.

Several tools exist that intercept the I/O calls from libc to
extract information and use it for analyzing and improving
the I/O behavior of programs [5]–[12] However, it is still
challenging to perform analyses that spots differences in I/O
behavior between different configurations of a program in
terms of contentions for system resources. This is mainly
because each program makes a vast number of system calls
through libc, and translating a large volume of information
from the system calls into a representation that facilitates
precise identification of differences between the programs is
not straightforward. In this paper, we consider the problem
of synthesis of the data from system traces, i.e., combining
the information in the data to extract precise insights for
understanding the I/O contentions caused by a program for
system resources. We do not introduce yet another tool;
instead, we present a methodology to synthesize the trace data
into a Directly-Follows-Graph [13] that depicts patterns of I/O
system calls, which then facilitates the comparative analysis of
programs in terms of requests made to the operating system.

1In most user programs, such as those written in FORTRAN or Python,
the libc calls are encapsulated within the software stack.

ar
X

iv
:2

40
8.

07
37

8v
2

 [
cs

.P
F]

 2
4

Se
p

20
24

The contributions of this work are the following:

• We present the theory behind the synthesis of the
Directly-Follows Graph from large amounts of informa-
tion in the I/O system call traces.

• We present a methodology to color the Directly-Follows-
Graph, which facilitates the comparison of patterns of
I/O system call accesses between several programs or
multiple process running simultaneously in a program.

• We apply our methodology to the IOR benchmark, and
infer the differences in file access contention when (1)
several processes access a single shared file versus all
the processes access their own individual files, and (2)
default read and write calls in IOR are replaced with the
MPI-IO counter-parts.

Organization: In Sec. II, we review the related works. In
Sec. III, we describe the format of the trace data used as input.
In Sec IV., we present the methodology to translate the trace
data into Directly-Follows Graph and explain the technique for
comparative analysis. In Sec V, we conduct experiments and
analyse the overheads, and finally in Sec. VI, we summarize
the findings and draw conclusions.

II. RELATED WORKS

In the existing tools for analyzing the I/O behavior of
programs [5]–[12], we identify the following two common
steps: (1) instrumentation of the program, which involves
intercepting or interrupting calls made by the program from
one or more layers of software interfaces to record relevant
information, and (2) synthesis of the recorded information after
the execution of the program, which involves a calculation of
statistical metrics and putting them together in visualizations
such as histograms, timeline plots, Gantt charts, heat maps,
and more.

Instrumentation. Most of the existing tools record infor-
mation by intercepting I/O calls of the standard C library,
and considerable work has been done to optimize the col-
lection and storage of this information in formats suitable for
HPC workloads. For example, Darshan’s instrumentation is
lightweight, non-intrusive and designed for 24x7 monitoring
of HPC applications [14], while the Score-P measurement
system [8], which collects traces in Open Trace Format
Version 2 (OTF2) [15] and profiles in CUBE4 [16] formats, is
tailored for scalable yet detailed program analysis. The traces
and profiles generated by Score-P can be used and processed
by various performance analysis tools such as Scalasca [12],
TAU [7], Vampir [9], and CubeGUI [16]. In this work, we do
not rely on the instrumentation process of any specific tool, but
rather focus on introducing a method to synthesize the instru-
mented data. To this end, we utilize the raw system call traces
recorded by strace [17]—a Linux utility that uses the ptrace
system call under the hood to instrument arbitrary commands
or programs in the user environment without requiring code
modification. The methodology by itself does not depend on
strace and can be applied over data instrumented by one of
the other existing tools.

Synthesis. Extensive efforts have been made to develop dif-
ferent methods for synthesizing and visualizing measurement
data. For example, the Vampir visualization environment trans-
forms measurements into a variety of graphical views, such as
timeline plots and heat maps, with interactive elements [9].
The result of synthesis could also be a performance report
that brings together information from various visualizations
and statistical metrics to provide a comprehensive overview
of the program. For instance, Darshan provides interfaces
to synthesize their log files as static PDF reports providing
an overview of the I/O performance of the program [5].
PyDarshan is a wrapper around Darshan that facilitates the
generation of interactive HTML reports [18]. Drishti is a tool
that synthesizes traces from DXT-Tracer to generate a variety
of interactive plots [6]. To the best of our knowledge, we
observe a lack of detailed exploration of dependency-graph-
based modeling in the synthesis of I/O related instrumented
data.

Dependency-graph-based modeling has previously been
used to reconstruct call-graphs, detect potential parallel regions
in sequential programs (e.g., in DiscoPoP [19], Parwiz [20]),
develop models to enable smart scheduling of HPC jobs [21],
etc. In this work, present a technique to synthesize the traces
into a specific form of dependency graph known as the
Directly-Follows Graph, as defined in Definition 4 in [13].
We discuss the computational complexities in synthesizing
the graph, and then use it for comparative analysis of I/O
operations across one or more programs.

III. THE INPUT DATA

We consider setups where every process involved in the
execution of a program independently records the I/O system
calls, and each system call captures at least the path of the
accessed file, the start timestamp and the duration between
start and return of the call. In this context, processes refer
to tasks executing an arbitrary command, where those tasks
can be co-located on a single core, distributed across cores
within a host machine, or even span multiple hosts in a
parallel execution. In this section, we describe the trace records
generated by strace, which are then used as inputs for our
methodology.

Tracing with strace

One could generate the traces of system calls of a command
by prefixing strace to the command that needs to be traced.
In Figure 1, we show an example of running strace with
ls and ls -l. Each command is run simultaneously by
three MPI processes (specified as srun -n 3), and each
MPI process records its traces in a separate file2 specified
by the option - o. In order to uniquely identify each trace
file, we follow a naming convention which is a combination

2For applications with a large number of processes, having a large number
of files could lead to meta-data performance issues [22]. Therefore, after
recording the traces, it is recommended that the relevant data (described in the
remainder of this section) from individual trace files are parsed and combined
efficiently into a suitable data format (such as a single HDF5 file).

srun -n 3 strace -o a_$(hostname)_$$.st \
-f -e read,write -tt -T -y ls

srun -n 3 strace -o b_$(hostname)_$$.st \
-f -e read,write -tt -T -y ls -l

a_host1_
9042.st

a_host1_
9043.st

a_host1_
9045.st

b_host1_
9157.st

b_host1_
9158.st

b_host1_
9160.st

ls

ls -l

Fig. 1: The commands for tracing ls and ls -l with strace,
each executed on three MPI processes, generating one trace
file for each process.

of name of the host machine, identifier of the MPI process
(rid) and identifier of the command (cid). In Linux, one
could obtain the name of the host machine from the shell
variable hostname. Each MPI process is represented by the
identifier of the launching process, which is obtained from
the variable $$. In our example, let the commands ls and
ls -l be identified with cid=’a’ and cid=’b’ respectively.
According to our example, the identifiers for each of the six
trace files are shown in Figure 1. The ASCII contents of the
trace files a host1 9042.st (rid=9042 for the command ls)
and b host1 9157.st (rid=9157 for the command ls -l) are
shown in Figure 2a and Figure 2b respectively.

We parse the following information from each line of each
trace file:

1) The process identifier (pid). The identifier of the process
executing the system call is recorded by specifying the option
-f. Note that pid would be different from rid if the MPI
process forks a child process to execute the command; in our
example, rid and pid are different. In general, for the case
of Simultaneous Multi-Threading or shared memory multi-
threaded applications (such as OpenMP), each MPI process
could spawn more than one child processes. In the considered
example, however, each MPI process is associated with only
one child process.

2) The system call name (call). The list of system calls to
be traced is specified using the -e option. In our example, for
simplicity, we trace only the read and write system calls.
However, strace can trace additional I/O system calls, and they
all can be included as input to our methodology.

3) The timestamp (start). The wall clock time at the start
of each system call, including microseconds, is recorded by
specifying the option -tt. For MPI processes executing in
different host machines, we do not require the system clocks
to be synchronized.

4) The duration (dur). The duration of a system call, which

is the time between its start and return of the call, is recorded
using the -T option.

5) The file path (fp). The path of the accessed file is
indicated as the first argument in the system call’s signature.
This is recorded using the -y option.

6) The transfer size (size). The number of bytes transferred
from the page table is indicated as the return value of the call
(i.e., the number after the = sign). This information is parsed
only for the variants of read and write system calls (and not for
other I/O system calls such as lseek, openat, etc.). Note
that the number of bytes requested, which is indicated as the
last argument in the system call’s signature may differ from
the actual number of bytes transferred.

Note that for read operations on regular files, if the re-
quested data is not in the page table, the read system call
internally issues a request to obtain the data from the storage
system. Read access from the storage system can be traced by
recording accesses to block-device files, which have a different
directory path from regular files. For write operations, the
system call returns as soon as the page table is updated without
the guarantee of the data update being completed in the storage
system; for the guarantee, one should trace the fsync system
calls.

If a system call is interrupted, it contains the keyword
ERESTARTSYS, and we ignore these calls. If a call is being
executed and meanwhile another one is being called from
a different process, then strace will preserve the order of
those events and mark the ongoing call with the keyword
<unfinished ...>. When the call returns, it will be
marked with the keyword resumed>. In such cases, the
duration of the call and the transfer size are indicated only
in the resumed record; an example of such a log in shown
in Figure 2c. The unfinished and the resumed records are
matched using the pid, and merged into a single record.

Thus, the trace files are processed according to the require-
ments mentioned in this section and used as input to our
methodology.

IV. THE DFG SYNTHESIS

We now explain the methodology for synthesizing the infor-
mation parsed from a set of trace files into a Directly-Follows
Graph (DFG). Our input data can be likened to an event log
described in the field of process mining [23]. Formalizing
the input data as an event log enables us to symbolically
describe the construction of the DFG and introduce methods
for comparing the I/O operations. To this end, we define the
following terminologies:

Event. Every record of system call is considered as a unique
event. An event e consists of the attributes described in Sec. III:

e = [cid, host, rid, pid, call, start, dur, fp, size] (1)

The attributes cid, host and rid are inferred from the name
of the trace file, and the other attributes are parsed from the
records of the corresponding trace file. Let E = {e1, . . . , em}
be the set of all possible events in all the trace files under
consideration. Then, ∄e1, e2 ∈ E such that e1 = e2; i.e., no

9054 08:55:54.153994 read(3</usr/lib/x86_64-linux-gnu/libselinux.so.1>, ..., 832) = 832 <0.000203>
9054 08:55:54.156640 read(3</usr/lib/x86_64-linux-gnu/libc.so.6>, ..., 832) = 832 <0.000079>
9054 08:55:54.159294 read(3</usr/lib/x86_64-linux-gnu/libpcre2-8.so.0.10.4>, ..., 832) = 832 <0.000087>
9054 08:55:54.162874 read(3</proc/filesystems>, ..., 1024) = 478 <0.000052>
9054 08:55:54.163049 read(3</proc/filesystems>, "", 1024) = 0 <0.000040>
9054 08:55:54.163560 read(3</etc/locale.alias>, ..., 4096) = 2996 <0.000041>
9054 08:55:54.163679 read(3</etc/locale.alias>, "", 4096) = 0 <0.000044>
9054 08:55:54.176260 write(1</dev/pts/7>, ..., 50) = 50 <0.000111>

Timestamp The file pathSys Call
Bytes

request
Transfer

size Durationpid

(a) System calls recorded by the MPI process with the ID 9042 for the command ls (Trace file: a host1 9042.st).

9173 08:56:04.731999 read(3</usr/lib/x86_64-linux-gnu/libselinux.so.1>, ..., 832) = 832 <0.000187>
9173 08:56:04.734569 read(3</usr/lib/x86_64-linux-gnu/libc.so.6>, ..., 832) = 832 <0.000075>
9173 08:56:04.737108 read(3</usr/lib/x86_64-linux-gnu/libpcre2-8.so.0.10.4>,..., 832) = 832 <0.000063>
9173 08:56:04.740961 read(3</proc/filesystems>, ..., 1024) = 478 <0.000080>
9173 08:56:04.741210 read(3</proc/filesystems>, "", 1024) = 0 <0.000067>
9173 08:56:04.742237 read(3</etc/locale.alias>, ..., 4096) = 2996 <0.000097>
9173 08:56:04.742505 read(3</etc/locale.alias>, "", 4096) = 0 <0.000083>
9173 08:56:04.754208 read(4</etc/nsswitch.conf>, ..., 4096) = 542 <0.000140>
9173 08:56:04.754487 read(4</etc/nsswitch.conf>, "", 4096) = 0 <0.000027>
9173 08:56:04.755279 read(4</etc/passwd>, ..., 4096) = 1612 <0.000037>
9173 08:56:04.756740 read(4</etc/group>, ..., 4096) = 872 <0.000091>
9173 08:56:04.758661 write(1</dev/pts/7>, ..., 9) = 9 <0.000074>
9173 08:56:04.759173 read(3</usr/share/zoneinfo/Europe/Berlin>, ..., 4096) = 2298 <0.000074>
9173 08:56:04.759471 read(3</usr/share/zoneinfo/Europe/Berlin>, ..., 4096) = 1449 <0.000033>
9173 08:56:04.759816 write(1</dev/pts/7>, ..., 74) = 74 <0.000099>
9173 08:56:04.760043 write(1</dev/pts/7>, ..., 53) = 53 <0.000073>
9173 08:56:04.760233 write(1</dev/pts/7>, ..., 65) = 65 <0.000099>

(b) System calls recorded by the MPI process with the ID 9157 for the command ls -l (Trace file: b host1 9157.st).

77423 16:56:40.452431 read(3</usr/lib/x86_64-linux-gnu/libselinux.so.1>, <unfinished ...>
...
...
77423 16:56:40.452660 <... read resumed> ..., 405) = 404 <0.000223>

(c) An example of strace records in case of simultaneous multi-processing.

Fig. 2: Examples of traces generated by strace.

two events are exactly the same. For example, if there are
two events from the same command that indicate read access
of same size to the same file at the same time for the same
duration from the same MPI process from the same host, then
these two events must have different pid. For instance, if the
-f option is not added to strace, the pid is not recorded.
This can result in two independent invocations of system calls
being identical and pointing to the same event, which is not
desired.

Case. A group of events that belong to a particular rid,
host and cid, arranged in increasing order of their timestamps,
is referred to as a case. In other words, the group of events
in each trace file is considered a unique case. A case c is
indicated as an arrangement of events as follows,

c = ⟨e1, e2, . . . en⟩ (2)

where all ei ∈ c are the events that occur in the case c,
and ∀ei, ei+1 ∈ c, the start timestamp of ei is less than
or equal to that of ei+1. For example, the case corresponding
to the execution of ls command on rid=9042, consisting of
sequence of events parsed from the trace file a host1 9042.st,

is shown in Figure 2a. Note that, according to this definition of
case, we do not distinguish between different SMT or OpenMP
processes within the same MPI process. However, one could
do so by re-defining case as a group of events belonging to
the same cid, host, and pid (instead of rid).

Event-log. A set of cases C = {c1, . . . , cn} is referred to
as an event-log. For example, the following sets of cases can
be considered from the experiment in Figure 1:

Ca ={a9042, a9043, a9045}
Cb ={b9157,b9158,b9160}
Cx = Ca ∪ Cb

(3)

where Ca is the set of cases executing the command ls, Cb is
the set of cases executing the command ls -l, and Cx is the
set of cases involved in the execution of both the commands.

Mapping and Activity. A mapping is a partial function f
that maps an event e ∈ E to a named entity referred to as
an activity a ∈ Af , and it is denoted as f : E ⇀ Af . The
mapping f is a function because an event e ∈ E is mapped to
at most one activity a ∈ Af , and it is partial because not all

e ∈ E are required to have a mapping. For example, consider
the following mapping:

f̂ : for a given event, return a string concatenating
call with fp truncated to contain at most
top two directory levels.

(4)

According to this mapping, the event parsed from the first
line of the trace file in Figure 2b would map to “read:/usr/lib”.
Notice that f can be one-to-one or many-to-one. Therefore, the
reverse mapping f−1 : Af → E is a multi-valued function3

that maps every a ∈ Af to a subset of events in E ; i.e.,
f−1(a) ⊆ E . Following up on our example, f̂−1(read:/usr/lib)
is a subset of events that correspond to those in the first three
lines of the trace file shown in Figure 2b.

Trace. For a given mapping f : E ⇀ Af and a case c ∈ C,
the sequence of activities corresponding to the events observed
in c is called an activity trace or simply trace σf (c), i.e.,

σf (c) = f ◦ c
= ⟨f(e1), f(e2), . . . f(en)⟩
= ⟨a1, a2, . . . an⟩

(5)

For example, for the mapping f̂ (defined in Equation 4), the
trace for the case a9042 ∈ Ca (corresponding to the trace file
in Figure 2a) is:

σf̂ (a9042) =⟨ read:/usr/lib, read:/usr/lib, read:/usr/lib,

read:/proc/filesystems, read:/proc/filesystems,

read:/etc/locale.alias, read:/etc/locale.alias,

write:/dev/pts⟩

Note that for all ei, ej ∈ c, ei precedes ej implies ai precedes
aj for all ai, aj ∈ σf (c).

Activity-log. For a given event-log C and a mapping f :
E ⇀ Af , an activity-log Lf (C) is a multi-set (i.e., a set
with multiple instances of the same element) of traces over
Af for C, and it is represented as Lf (C) ∈ B(Af

∗), where
Af

∗ is the set of all possible sequences of activities in Af .
For example, consider a fictitious event-log C = {0, 1, 2}.
If Af = {a, b, c}, and the traces are σf (0) = ⟨a, a, b⟩,
σf (1) = ⟨a, a, b⟩, σf (2) = ⟨a, c⟩, then the activity-log
Lf (C) = {⟨a, a, b⟩2, ⟨a, c⟩}; the trace ⟨a, a, b⟩ from σf (0) and
σf (1) is indicated with multiplicity 2. Now, consider the event-
logs shown in Equation 3 and the mapping f̂ . The activity-log
Lf̂ (Ca) after appending every trace with a start (•) and an end
(■) activity would be:

Lf̂ (Ca) ={⟨•, read:/usr/lib, read:/usr/lib, read:/usr/lib,

read:/proc/filesystems, read:/proc/filesystems,

read:/etc/locale.alias, read:/etc/locale.alias,

write:/dev/pts, ■⟩3}

3A general “function” can only be either one-to-one or many-to-one. The
reverse mapping of many-to-one is one-to-many, and it is not a function in
the normal sense, and therefore the term multi-valued functions is used to
distinguish from normal functions.

From Ca, all the three cases a9042, a9043 and a9045 map
to the same trace, and hence Lf̂ (Ca) consist of a single trace
with multiplicity of 3. Similarly, the activity logs Lf̂ (Cb) and
Lf̂ (Cx) are:

Lf̂ (Cb) ={⟨•, read:/usr/lib, read:/usr/lib, read:/usr/lib,

read:/proc/filesystems, read:/proc/filesystems,

read:/etc/locale.alias, read:/etc/locale.alias,

read:/etc/nsswitch.conf, read:/etc/nsswitch.conf,

read:/etc/passwd, read:/etc/group,

write:/dev/pts, read:/usr/lib, read:/usr/lib,

write:/dev/pts,write:/dev/pts,write:/dev/pts, ■⟩3}

Lf̂ (Cf) = L(Ca) ∪ L(Cb)

Thus, an activity-log can be seen as a query and an abstraction
applied to an event-log through the mapping f ; this mapping
provides a mechanism to shift the focus of information in the
event-log. The activity-log is used as an input to construct the
DFG.

A. Construction of the Directly-Follows-Graph

Given an event-log C and a mapping f : E ⇀ Af , the
activity-log Lf (C) ∈ B(Af

∗) is determined, and the DFG
G[Lf (C)] is constructed such that a ∈ Af are the nodes and
an edge (a1, a2) where a1, a2 ∈ Af exists if and only if there
exists a trace in the activity-log, i.e., ∃σf ∈ Lf such that a1
immediately precedes (or directly follows) a2. If a1 = a2,
then the node has an edge pointing to itself.

For example, for the activity-logs Lf̂ (Ca), Lf̂ (Cb) and
Lf̂ (Cx), the corresponding the DFGs G[Lf̂ (Ca)], G[Lf̂ (Cb)]
and G[Lf̂ (Cx)] are shown in Figure 3b, Figure 3c and Fig-
ure 3d respectively. The number on the edges indicates how
many times the corresponding directly-follows relation was
observed in the activity-log. The statistics indicated in the
nodes (i.e., Load and DR) and the coloring schemes will be
explained in the following sub-sections. The implementation
for scalable construction of G from activity-log Lf (C) is
discussed in [24], [25]. Thus, G[Lf̂ (Ca)] is the DFG synthesis
according to f̂ for the processes executing the ls command,
and similarly G[Lf̂ (Cb)] for the processes executing the ls
-l command. G[Lf̂ (Cx)] is the synthesis of events from all
the processes executing both commands.

The DFG is a response to a query applied through f on the
event-log. One could modify the query to restrict the synthesis
to a particular section of the event-log. For example, to restrict
the synthesis to the directory /usr/lib, define a mapping f1
such that it maps an event to an activity only if the file path
contains the sub-string /usr/lib. Then, for the corresponding
activity-log Lf1(Cx) ∈ B(Af1

∗) over Cx and the mapping
f1 : E ⇀ Af1 , the DFG file access footprint G[Lf1(Cx)] is
shown in Figure 4. Thus, the DFG provides a way for the
users to interactively visualize the I/O accesses made by their
application.

<CALL_NAME>
<DIRECTORY_PATH>

Load: <RELATIVE_DUR>/<BYTES_MOVED>
DR: <MAX_CONC> x <PROCESS_DATA_RATE>

(a) Semantics inside a node of the DFG.

●

read
/usr/lib

Load:0.22 (14.98 KB)
DR: 2x10.15 MB/s

3

6

read
/proc/filesystems

Load:0.27 (2.87 KB)
DR: 2x2.76 MB/s

3

3

read
/etc/locale.alias

Load:0.19 (17.98 KB)
DR: 3x17.47 MB/s

3

3

write
/dev/pts

Load:0.17 (0.75 KB)
DR: 3x0.61 MB/s

3

■

3

(b) G[Lf̂ (Ca)]

●

read
/usr/lib

Load:0.22 (14.98 KB)
DR: 2x10.15 MB/s

Ranks: 2

3

6

read
/proc/filesystems

Load:0.27 (2.87 KB)
DR: 2x2.76 MB/s

3

3

read
/etc/locale.alias

Load:0.19 (17.98 KB)
DR: 3x17.47 MB/s

3

3

read
/etc/nsswitch.conf

Load:0.05 (1.63 KB)
DR: 2x2.92 MB/s

3

3

read
/etc/passwd

Load:0.02 (4.84 KB)
DR: 1x29.77 MB/s

3

read
/etc/group

Load:0.03 (2.62 KB)
DR: 2x11.79 MB/s

3

write
/dev/pts

Load:0.17 (0.75 KB)
DR: 3x0.61 MB/s

Ranks: 1

3

6

read
/usr/share

Load:0.05 (11.24 KB)
DR: 2x31.67 MB/s

3

■

33

3

(c) G[Lf̂ (Cb)]

●

read
/usr/lib

Load:0.22 (14.98 KB)
DR: 2x10.15 MB/s

6

12

read
/proc/filesystems

Load:0.27 (2.87 KB)
DR: 2x2.76 MB/s

6

6

read
/etc/locale.alias

Load:0.19 (17.98 KB)
DR: 3x17.47 MB/s

6

6

read
/etc/nsswitch.conf

Load:0.05 (1.63 KB)
DR: 2x2.92 MB/s

3

write
/dev/pts

Load:0.17 (0.75 KB)
DR: 3x0.61 MB/s

3

3

read
/etc/passwd

Load:0.02 (4.84 KB)
DR: 1x29.77 MB/s

3

read
/etc/group

Load:0.03 (2.62 KB)
DR: 2x11.79 MB/s

3

3

6

read
/usr/share

Load:0.05 (11.24 KB)
DR: 2x31.67 MB/s

3

■

63

3

(d) G[Lf̂ (Cx)]

Fig. 3: The DFG synthesis for the event-logs in Equation 3. The nodes indicate the file access activities and the number on
the edges indicate the number of times the directly-follows relation between two activities was observed.

B. Activity Statistics

Given an event-log C and a mapping f : E ⇀ Af , we
compute statistics for each a ∈ Af , which add performance
perspectives to the nodes of the DFG. Particularly, for each
node, we aim to determine the proportion of system time spent
relative to activities represented by the other nodes, the number
of bytes transferred, and the rate of data movement. To this

end, we compute the following statistics:

• Relative duration: The relative duration of an activity
a ∈ Af encountered in C is defined as the proportion
of the time spent by events on activity a relative to
the total time spent across all activities ∀a ∈ Af . Let
e[dur] be the duration of system call for event e ∈ E . In
order to compute the relative duration rdf (a, C), we first

●
read

x86_64-linux-gnu/libselinux.so.1
Load:0.43 (4.99 KB)

DR: 2x8.22 MB/s

6
read

x86_64-linux-gnu/libc.so.6
Load:0.26 (4.99 KB)
DR: 2x11.45 MB/s

6
read

x86_64-linux-gnu/libpcre2-8.so.0.10.4
Load:0.32 (4.99 KB)
DR: 1x10.78 MB/s

6 ■6

Fig. 4: The DFG synthesis for the event-logs in Equation 3. The nodes indicate the file access activities and the number on
the edges indicate the number of times the directly-follows relation between two activities was observed.

b9158

b9157

b9160

timeline
0 5 ms

Fig. 5: The timeline plot: tf̂ (“read:/usr/lib”, Cb).

aggregate the duration of all the events related to a ∈ Af

occurring in C; i.e.,

df (a, C) = {e[dur] | ∀c ∈ C,∀e ∈ c ∩ f−1(a)} (6)

In words, for a given event-log C and an activity a ∈ Af ,
we check for each case in c ∈ C and for each event e ∈ c,
if this event e is in the set of events that maps to activity
a, i.e., f−1(a). If it does, then the value corresponding to
the duration attribute of this event, i.e., e[dur] is added
to the set df (a, C). For example, df̂ (“read:/usr/lib”, Ca)
is a set that constitutes the duration values parsed from
the three trace files represented by Ca, and consists of
only those events with file-path containing the sub-string
/usr/lib. After determining df (a, C), we compute the
sum of all the duration values in the set,

d̄f (a, C) =
∑

df (a, C) (7)

and the relative duration rdf (a, C)) is computed as fol-
lows:

rdf (a, C) =
d̄f (a, C)∑

a∈Af
d̄f (a, C)

(8)

This metric allows us to gauge the relative importance of
each activity in terms of the system time spent on I/O.

• Total bytes moved: Let e[size] be the number of bytes
moved for event e ∈ E . The total number of bytes moved
for activity a ∈ Af occurring in C is:

bf (a, C) =
∑

{e[size] | ∀c ∈ C,∀e ∈ c ∩ f−1(a)} (9)

In the nodes of the DFGs in Figure 3, the relative duration
and total bytes moves are combined and indicated as:

“Load: rdf̂ (bf̂)” (10)

Next, we approximate the rate of data movement for each
activity by computing the following:

• Process Data Rate: The average number of bytes trans-
ferred per second per process for activity a ∈ Af

encountered in C is considered as the process data rate
for activity a, and it is denoted as d̄rf (a, C). In order to
compute the rate at which each process performing an
activity moves data, we first define the data rate for an
event e ∈ E :

dr(e) =
e[size]

e[dur]
(11)

We then aggregate the event data rates related to activity
a occurring in C:

drf (a, C) = {dr(e) | ∀c ∈ C,∀e ∈ c ∩ f−1(a)} (12)

The process data rate drf is then the arithmetic mean (µ)
of all the values in drf :

d̄rf (a, C) = µ(drf (a, C)) (13)

• Max-Concurrency: The maximum concurrency attained
for activity a ∈ Af encountered in C is the highest
number of concurrent events corresponding to a that
occurred in C, and it is denoted as mcf (a, C). In order to
compute mcf , we first define the start and end timestamp
for each event e ∈ E as a tuple:

t(e) = (e[start], e[start] + e[dur]) (14)

and aggregate the time stamps of all the events for each
a occurring in C into a list:

tf (a, C) = [t(e) | ∀c ∈ C,∀e ∈ c ∩ f−1(a)] (15)

Each t(e) ∈ tf (a, C) can be visualized as a range from
start to end timestamp in a timeline plot. For example,
the timeline plot of tf̂ (“read:/usr/lib”, Cb) is shown in
Figure 5. The max-concurrency mcf is computed as:

mcf (a, C) = get_max_concurrency(tf (a, C))
(16)

The algorithm get_max_concurrency first sorts tf
according to increasing start timestamps, iterates through
the sorted tf , and determines the maximum number of
consecutive events that could be identified such that the
end time of the first event is greater than the start time
of the last event. For example, in tf̂ (“read:/usr/lib”, Cb),
max-concurrency is 2. Notice that, for precise estimation

of this metric in a program with processes distributed
across multiple nodes, the system clocks have to be syn-
chronized. If they are not, then the mcf values may not be
exact. However, not having the clocks synchronized does
not affect the DFG construction or the other metrics.

In the nodes of the DFGs in Figure 3, the process data rate and
the max-concurrency statistics are combined and indicated as:

“DR: mcf̂ × d̄rf̂” (17)

This metric shows an estimation of the rate at which a file
access activity induces I/O load on the system.

Thus, appending the DFG with statistics related to file
access activities enhances the visualization by providing addi-
tional information, with which one could analyse not only the
file accesses but also how the activities differ from each other
in terms of system load and data movements.

C. Performance Comparisons via Graph Coloring

For a given event-log C and a mapping f : E ⇀ Af , we
color the nodes and edges of the DFG G[Lf (C)] according to
one of the following strategies:

1) Statistics-based coloring: A straightforward method
to visually compare the I/O operations represented by
the activities in Af is by coloring the nodes of the
DFG G[Lf (C)] based on the statistics described in the
previous sub-section. For instance, in Figure 3b and
Figure 3c, the activities are colored based on the relative
duration; i.e., higher the value of rdf , the darker the
shade of blue. Alternatively, one could color the nodes
based on the number of bytes bf moved. However, with
this method, one could not identify the similarities and
differences in the I/O operations among the different
processes, i.e., among the different cases ci ∈ C.

2) Partition-based coloring: In order to make comparisons
among the cases in an event-log C, we perform the
following steps:

a) From the event-log C, identify two mutually exclu-
sive subsets G and R.

b) Construct the DFG G[Lf (C)] from the full event-
log C, and the DFGs G[Lf (G)] and G[Lf (R)] from
the event-log subsets.

c) Color the nodes and edges of G[Lf (C)] as follows:
• The nodes and edges that occur exclusively in

G[Lf (G)] are given the color green.
• The nodes and edges that occur exclusively in

G[Lf (R)] are given the color red.
• The nodes and edges that occur in both

G[Lf (G)] and G[Lf (R)] are not colored.
For example, let us compare and contrast I/O operations
between the processes executing the commands ls and
ls -l. To this end, we consider the following partition
of Cx (based on Equation 3):

Gx = Ca i.e., the processes executing ls

Rx = Ca i.e., the processes executing ls -l
(18)

The coloring of the DFG G[Lf̂ (Cx)] based on the DFGs
constructed from the subsets Gx and Rx is shown in
Figure 3d. The nodes and edges in red are those that oc-
cur exclusively in the processes executing the command
ls -l. There are no activities that occur exclusively in
ls, except a single directly-follows relation indicated as
an edge from “read:/etc/locale.alias” to “write:/dev/pts”.
The remaining activities and relations are observed in the
processes executing both commands.

V. EXPERIMENTS

In this section, we apply DFG synthesis to I/O traces from
runs of IOR benchmark. First, we describe our implementation
and the HPC environment on which the experiments are
conducted. Then, we run the IOR benchmark with different
options for file output and software interface, and compare
the file access contentions between the runs.

Implementation: We use strace version 6.4 to trace user
programs. After the program execution, the individual trace
files are processed as described in Sec. III and stored in a
single HDF5 file. Each processed trace file (i.e., each case)
is stored in a separate group within the HDF5 file as a table.
The columns of these tables correspond to the event attributes
pid, call, start, dur, fp, size as defined in Sec. III. Each table
contains the events for a particular case, sorted by increasing
start timestamps (start). This format of the HDF5 file naturally
represents an event-log according to our definition in Sec. IV.
To synthesize the DFG, we perform the following steps in
Python (also shown in Figure 6):

1) From each table in the HDF5 file, retrieve the events
containing a given sub-string (e.g., “/usr/lib”) in the file
path value (fp). The resulting tables are concatenated and
stored as a DataFrame object implemented by the Pandas
library. The DataFrame additionally has a column named
“case” that points each event to the corresponding trace
file name.

2) Implement the mapping function f and apply it to the
DataFrame to add a column named “activity”. In step 2
of the code in Figure 6, we show the Python implemen-
tation of the mapping function defined in Equation 4.
This operation is O(n), where n is the number of rows
in the DataFrame, and it is scalable as it is applied
independently to each row.

3) Notice that the DataFrame with only the “case” and
“activity” columns represents the activity-log according
to our definition in Sec. IV. The construction of the
DFG requires a single iteration through the activity-
log. Therefore, this operation is also O(n) and can be
scaled [25].

4) The computation of I/O statistics requires a single pass
over the DataFrame followed by a grouping and aggrega-
tion based on activity values. Therefore, the complexity
is O(mn), where m is the number of unique activities
|Af | (i.e., the number of nodes in the DFG). For all
intents and purposes, the mapping function should be

import pandas as pd
from st_inspector import *

#0) Pointer to the H5 event-log file

event_log = EventLogH5(H5_FILE_PATH)

#1) Filter the event log. Stores the data as a pd.DataFrame

event_log.apply_fp_filter('/usr/lib')

#2a) Implement the mapping of events to activity values
def f(event:pd.Series) -> str:

Get the file_path attribute of the event

fp = event['fp']

Truncate file path to top-two directories

dirs = fp.split('/')
if len(dirs) > 2:

fp = f'/{dir[1]}/{dir[2]}'

return concatenatenation of call and fp

return f'{event['call']}\n{fp}'

#2b) Apply the mappping fn to determine the activity values
event_log.apply_mapping_fn(f)

#3) Construct the DFG

dfg = DFG(event_log)

#4) Compute I/O statistics

stats = IOStatistics()
stats.compute_statistics(event_log)

#5a) Apply statistics-based coloring on the dfg
colored_dfg = DFGViewer(dfg, styler=StatisticsColoring(stats))

colored_dfg.render()

#5b) (or) Apply partition-based coloring on the dfg

green_event_log, red_event_log = PartitionEL(event_log)
green_dfg = DFG(green_event_log)

red_dfg = DFG(red_event_log)
partition_coloring = PartitionColoring(green_dfg,red_dfg,stats)
colored_dfg = DFGViewer(dfg, styler=partition_coloring)

colored_dfg.render()

Fig. 6: DFG synthesis using the Python library: st inspector.

defined such that m is small; otherwise, the visual
analysis of the DFG would be tedious.

5) The DFG along with the statistics are rendered. The
rendered DFG is styled by applying one of the coloring
methods described in Sec. IV-C. The complexity of
the rendering is O(m2) in the worst case; i.e., when
every node has an edge to every other node. Note that
partition-based coloring (Step 5b in Figure 6) requires
at most one additional pass over the activity-log to
construct both the DFGs, i.e., O(n), to compute both
green dfg and red dfg.

Our implementation is available through the Python library
st inspector. The source code is available in Zenodo [26]. This
implementation is used for the experiments.

The HPC Environment: The experiments are conducted
on the compute nodes of the JUWELS cluster [27] at the
Jülich Supercomputing Centre. We use the nodes of JUWELS
that have 2x24 cores Intel Xeon Platinum 8168 CPUs with 96
GB DDR4 memory. JUWELS is connected via Connext-X4
Infiniband/Ethernet adaptor to the 6th generation JUST storage
infrastructure [28], which is a GPFS based file system.

A. Single Shared File vs File Per Process

In applications where multiple processes are simultaneously
involved in I/O operations, we compare the following two
scenarios: (1) Single Shared File (SSF): all processes read
from or write to a single shared file, and (2) File Per Process

(FPP): each process accesses its own individual file. Generally,
allowing each process to work on its own file eliminates the
contention issues arising from file locking, which is otherwise
common in the shared file scenario. However, creating a file
for each process at scale leads to metadata overhead, which
hits performance especially when data needs to be frequently
gathered across processes. Therefore, users need to gauge the
trade-offs between the two approaches and quantify, for a
given application, whether contention leads to significantly
increased execution times compared to the case where each
process operates on its own file. In this experiment, we apply
our methodology to verify the possibility of identifying these
contention issues and visualizing the differences in file access
activities between the two scenarios.

We use the IOR benchmark suite to write and read in
parallel from 96 MPI processes or rank spanning across 2
nodes of the JUWELS cluster (i.e., 96 cores in total and
we execute one MPI rank per core). Each rank first writes
3 segments of data, with each segment consisting of a 16 MB
block, and each block divided into 16 write operations of 1
MB each. Subsequently, each rank reads the data written by
a process from the neighboring node (this is done to avoid
reading the data stored in the DRAM). The format of the
file is shown in Figure 7a, and the IOR options for the SSF
and FPP experiments are shown in Figure 7b. The number of
segments, block size, and size of each operation are specified
with the options -s, -b, and -t, respectively. The option
-C forces the MPI ranks to read the data written by the
neighboring node, and the option -e ensures that the write
to the file system is complete before starting the subsequent
read operation. By default, IOR runs in the SSF mode, and
switches to FPP when the option -F is specified. We run
IOR in both modes; for SSF, the files are accessed from the
folder $SCRTACH/ssf, and for FPP, the files are accessed
from the folder $SCRTACH/fpp. The access path is specified
using the -o option. We aim to identify the differences in file
contentions occurring in these two folders.

We record the events related to variants of read, write
and openat system calls and prepare the HDF5 event-log.
The event-log CX consists of 192 cases (each stored as a table
in the HDF5 file); 96 from the SSF run and 96 from the FPP
run. We retrieve all the events without applying any file path
filters. The map of events to activity values (f̄) is similar to
the one defined in Equation 4, but abstracts the file paths based
on site-specific variable.

After applying the mapping f̄ , the activity-log Lf̄ (CX) is
determined, and the DFG G[Lf̄ (CX)] is constructed, as shown
in Figure 8a. The I/O statistics described in Section IV-B are
computed and the nodes of the DFG are colored based on
the corresponding relative duration statistic (rdf̄) computed
according to Equation 8; higher the value of rdf̄ , darker
the shade of blue. It can be seen that openat and write
operations under the $SCRATCH directory have a relatively
high load.

Now, knowing that there is a relatively high load under
the $SCRATCH directory, we filter the event-log to retrieve

1m 1m 1m

Block = 16m
Rank 0

1m 1m 1m

Block = 16m
Rank 2

1m 1m 1m

Block = 16m
Rank 96

Segment 1

1m 1m 1m

Block = 16m
Rank 0

1m 1m 1m

Block = 16m
Rank 96

Segment 3

Position in the File

(a) The format of the IOR file.

#Single Shared File
srun -n 96 ./strace.sh ./ior -t 1m -b 16m -s 3 -w -r -C -e -o $SCRATCH/ssf/test

#One File per Process
srun -n 96 ./strace.sh ./ior -t 1m -b 16m -s 3 -w -r -F -C -e -o $SCRATCH/fpp/test

(b) IOR commands to simulate SSF and FPP scenarios.

Fig. 7: The IOR Experiment.

● openat
$SOFTWARE

Load:0.00

192

205632

read
$SOFTWARE

Load:0.00 (5.20 MB)
DR: 11x47.94 MB/s

5760

openat
$HOME

Load:0.00

192

5184

1152 192

openat
Node Local
Load:0.00

384

576

384

192

write
Node Local

Load:0.00 (825.82 MB)
DR: 8x2111.11 MB/s

384

192

12480

openat
$SCRATCH
Load:0.55

192

write
$SCRATCH

Load:0.43 (9.66 GB)
DR: 96x3175.20 MB/s

192

read
$SCRATCH

Load:0.02 (9.66 GB)
DR: 96x4533.08 MB/s

192

192

9024

9024

■192

(a) DFG synthesis applied to all the events.

●

openat
$SCRATCH/ssf

Load:0.54

96

openat
$SCRATCH/fpp

Load:0.01

96

write
$SCRATCH/ssf

Load:0.43 (4.83 GB)
DR: 96x2779.77 MB/s96

read
$SCRATCH/ssf

Load:0.01 (4.83 GB)
DR: 96x4601.46 MB/s

96

96

4512

4512

■

96

write
$SCRATCH/fpp

Load:0.00 (4.83 GB)
DR: 29x3570.63 MB/s

96

read
$SCRATCH/fpp

Load:0.00 (4.83 GB)
DR: 29x4464.69 MB/s

96

96

4512

4512

96

(b) DFG synthesis applied only to events that access the $SCRATCH directory.

Fig. 8: DFG synthesis of the events from both SSF and FFP modes of IOR runs.

●
read

$SOFTWARE
Load:0.00 (5.19 MB)

DR: 8x45.97 MB/s

192

5951
lseek

$SOFTWARE
Load:0.00

768

lseek
Node Local
Load:0.00

192

768

write
Node Local

Load:0.00 (825.82 MB)
DR: 7x2105.87 MB/s

384
192

12480

lseek
$SCRATCH
Load:0.00

96

pwrite64
$SCRATCH

Load:0.21 (4.83 GB)
DR: 96x2898.37 MB/s

96

192

write
$SCRATCH

Load:0.31 (4.83 GB)
DR: 96x3074.08 MB/s

4608

read
$SCRATCH

Load:0.25 (4.83 GB)
DR: 96x4436.68 MB/s

4608

pread64
$SCRATCH

Load:0.21 (4.83 GB)
DR: 96x4516.95 MB/s

96

■96

4608

4512
9696

4512

96

4512

Fig. 9: DFG synthesis of events from the MPI-IO experiment.

only those events that access the $SCRATCH directory. We
re-apply the mapping and construct the DFG, which is shown
in Figure 8b. It can be seen that the openat and write
activities on files under $SCRATCH/ssf (which is the access
path for the IOR run in SSF mode) have a significantly higher
relative duration than those corresponding to the files under
$SCRTACH/fpp (access path for the IOR run in FPP mode).
This quantifies the contention issue due to file locking in the
SSF scenario in terms of execution times.

B. With vs Without MPI-IO Interface

The MPI-IO provides standard interfaces for parallel I/O
access [29]. It has been noted that performance gains through
this interface are not guaranteed unless it is correctly config-
ured by identifying the MPI-IO defined file access patterns
within the program [4]. Therefore, tools that assist users
in comparing the performance impacts of different interface
configurations can be beneficial. In this experiment, we run the
IOR benchmark both with and without the MPI-IO interface.
By default, IOR does not use the MPI-IO interface. Adding the
option -a mpiio would do a naive replacement of standard
file operations with the MPI-IO counterpart, without the use
of advanced MPI-IO configurations. We run IOR in SSF mode
as before, this time with and without the -a mpiio option,
and compare the file access contention between the runs.

In addition to variants of read, write, and openat,
we also record the events related to lseek, and prepare the
event-log CY . We retrieve all the events, apply the mapping f̄ ,
construct the DFG G[Lf̄ (CY)], and compute the I/O statistics.
Unlike the previous run, this time the two runs do not use
distinct file access paths. Therefore, to compare the two runs,
we apply the partition-based coloring described in Sec. IV-C.
To this end, the event-log CY is partitioned into two mutually
exclusive event logs, GY and RY . The event-log GY consti-
tutes cases that were run with the MPI-IO interface, and RY

constitutes cases that were run without the MPI-IO interface.
We color the nodes of G[Lf̄ (CY)] according to the steps
defined in partition-based coloring (Sec. IV-C). The resulting
DFG is shown in Figure 9; the green nodes and edges are
those that occur exclusively in the run with MPI-IO interface,
and red nodes and edges are those that occur exclusively in the

run without the MPI-IO interface. All other nodes and edges
occur in both the runs (we skip the rendering of openat calls
in Figure 9 as it does not highlight useful differences).

It can be seen that MPI-IO utilizes the system calls
pread64 and pwrite64 instead of the standard read and
write. Standard read or write calls start from the offset
left by the previous access in an opened file, which means
other processes must call lseek to reset the offset to the cor-
rect position before performing their own file operations. The
pread64 and pwrite64 system calls combine file access
and seek operations into a single command. This eliminates
the need for an explicit lseek call before reading or writing,
thereby reducing the number of system calls issued from
the user environment. Therefore, one could observe that the
number of lseek calls preceding file accesses is significantly
lower in the run that use MPI-IO interface compared to the run
without MPI-IO. We observe that the reduction in the number
of system calls resulted in a relatively reduced load in terms
of overall duration.

Availability of Data and Materials: The experi-
mental data and the results that support the findings of
this study are available in Zenodo with the identifier
https://doi.org/10.5281/zenodo.13325645.

VI. CONCLUSION

In this paper, we presented a dependency-graph-based
methodology for comparative analyses of arbitrary user pro-
grams in terms of I/O requests made to the operating system.
To this end, we considered the I/O operations from the
traces of system calls of one or more programs as input.
We presented the methodology to transform the input data
into a Directly-Follows-Graph consisting of nodes that rep-
resent I/O operations occurring at specific file paths, and
the edges representing the directly-follows relation between
those I/O operations. Based on the Directly-Follows-Graph,
we described the technique to compare and contrast the
patterns of I/O operations between multiple programs. We
tested our methodology by applying it to the IOR benchmark
and validating the similarities and differences in the patterns of
I/O requests made to the operating system when IOR was run
with different options for file output and software interface.

https://doi.org/10.5281/zenodo.13325645

Our methodology can be used in tools that aim to diagnose
and compare programs based on system resource contentions
to identify I/O performance bottlenecks. Such tools are par-
ticularly valuable for supporting users of HPC systems and
ensuring optimal resource usage. In future work, we plan to
apply our technique to typical HPC workloads and document
the findings.

REFERENCES

[1] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali,
“Parallel computational steering for HPC applications using HDF5 files
in distributed shared memory,” IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 6, pp. 852–864. [Online]. Available:
http://ieeexplore.ieee.org/document/6152102/

[2] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:
A high-performance scientific i/o interface,” in Proceedings of the 2003
ACM/IEEE conference on Supercomputing. ACM, p. 39. [Online].
Available: https://dl.acm.org/doi/10.1145/1048935.1050189

[3] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon,
J. Hollingsworth, J. Saltz, and A. Sussman, “Tuning the performance
of i/o-intensive parallel applications,” in Proceedings of the fourth
workshop on I/O in parallel and distributed systems part of the
federated computing research conference - IOPADS ’96. ACM Press,
pp. 15–27. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
236017.236027

[4] R. Thakur, W. Gropp, and E. Lusk, “A case for using MPI’s
derived datatypes to improve i/o performance,” in Proceedings of the
IEEE/ACM SC98 Conference. IEEE, pp. 1–1. [Online]. Available:
http://ieeexplore.ieee.org/document/1437288/

[5] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale i/o workloads,” in 2009 IEEE International
Conference on Cluster Computing and Workshops. IEEE, pp. 1–10.
[Online]. Available: http://ieeexplore.ieee.org/document/5289150/

[6] H. Ather, J. L. Bez, B. Norris, and S. Byna, “Illuminating the i/o
optimization path of scientific applications,” in High Performance
Computing, A. Bhatele, J. Hammond, M. Baboulin, and C. Kruse,
Eds. Springer Nature Switzerland, vol. 13948, pp. 22–41, series
Title: Lecture Notes in Computer Science. [Online]. Available:
https://link.springer.com/10.1007/978-3-031-32041-5

[7] S. Shende, A. D. Malony, W. Spear, and K. Schuchardt, “Characterizing
i/o performance using the TAU performance system,” IOS Press, pp.
647–655.

[8] A. Knüpfer, C. Rössel, D. A. Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf, “Score-p: A
joint performance measurement run-time infrastructure for periscope,
scalasca, TAU, and vampir,” in Tools for High Performance Computing
2011, H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch,
Eds. Springer Berlin Heidelberg, pp. 79–91. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-31476-6

[9] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M. S. Müller, and W. E. Nagel, “The vampir performance
analysis tool-set,” in Tools for High Performance Computing,
M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz,
Eds. Springer Berlin Heidelberg, pp. 139–155. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-68564-7

[10] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski,
“Recorder 2.0: Efficient parallel i/o tracing and analysis,” in 2020
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, pp. 1–8. [Online]. Available: https:
//ieeexplore.ieee.org/document/9150354/

[11] A. Uselton, M. Howison, N. J. Wright, D. Skinner, N. Keen, J. Shalf,
K. L. Karavanic, and L. Oliker, “Parallel i/o performance: From events
to ensembles,” in 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS). IEEE, pp. 1–11. [Online]. Available:
http://ieeexplore.ieee.org/document/5470424/

[12] I. Zhukov, C. Feld, M. Geimer, M. Knobloch, B. Mohr, and
P. Saviankou, “Scalasca v2: Back to the future,” in Tools for High
Performance Computing 2014, C. Niethammer, J. Gracia, A. Knüpfer,

M. M. Resch, and W. E. Nagel, Eds. Springer International
Publishing, pp. 1–24. [Online]. Available: https://link.springer.com/10.
1007/978-3-319-16012-2

[13] W. M. P. Van Der Aalst, “Foundations of process discovery,” in Process
Mining Handbook, W. M. P. Van Der Aalst and J. Carmona, Eds.
Springer International Publishing, vol. 448, pp. 37–75, series Title:
Lecture Notes in Business Information Processing. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-031-08848-3 2

[14] P. Carns, “Darshan,” in High Performance Parallel I/O, 2014th ed.
Chapman and Hall/CRC, pp. 351–358.

[15] OTF2 Developer Community, “Open trace format version 2 (OTF2).”
[Online]. Available: https://zenodo.org/record/7817732

[16] P. Saviankou, M. Knobloch, A. Visser, and B. Mohr, “Cube v4: From
performance report explorer to performance analysis tool,” Procedia
Computer Science, vol. 51, pp. 1343–1352. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S187705091501128X

[17] “strace - the linux syscall tracer.” [Online]. Available: https:
//github.com/strace/strace/releases/tag/v6.9

[18] J. Luettgau, S. Snyder, T. Reddy, N. Awtrey, K. Harms, J. L. Bez,
R. Wang, R. Latham, and P. Carns, “Enabling agile analysis of i/o
performance data with PyDarshan,” in Proceedings of the SC ’23
Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis. ACM, pp. 1380–1391.
[Online]. Available: https://dl.acm.org/doi/10.1145/3624062.3624207

[19] Z. Li, R. Atre, Z. Ul-Huda, A. Jannesari, and F. Wolf, “DiscoPoP:
A profiling tool to identify parallelization opportunities,” in Tools
for High Performance Computing 2014, C. Niethammer, J. Gracia,
A. Knüpfer, M. M. Resch, and W. E. Nagel, Eds. Springer
International Publishing, pp. 37–54. [Online]. Available: https:
//link.springer.com/10.1007/978-3-319-16012-2

[20] A. Ketterlin and P. Clauss, “Profiling data-dependence to assist
parallelization: Framework, scope, and optimization,” in 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, pp. 437–448. [Online]. Available: http://ieeexplore.ieee.org/
document/6493640/

[21] J.-B. Besnard, A. Tarraf, C. Barthélemy, A. Cascajo, E. Jeannot,
S. Shende, and F. Wolf, “Towards smarter schedulers: Molding
jobs into the right shape via monitoring and modeling,” in High
Performance Computing, A. Bienz, M. Weiland, M. Baboulin, and
C. Kruse, Eds. Springer Nature Switzerland, vol. 13999, pp. 68–81,
series Title: Lecture Notes in Computer Science. [Online]. Available:
https://link.springer.com/10.1007/978-3-031-40843-4

[22] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and
F. Verzelloni, “Parallel i/o and the metadata wall,” in Proceedings
of the sixth workshop on Parallel Data Storage. ACM, pp. 13–18.
[Online]. Available: https://dl.acm.org/doi/10.1145/2159352.2159356

[23] W. Van Der Aalst, Getting the Data. Springer Berlin Heidelberg,
pp. 125–162. [Online]. Available: http://link.springer.com/10.1007/
978-3-662-49851-4

[24] S. J. J. Leemans, D. Fahland, and W. M. P. Van Der Aalst,
“Scalable process discovery with guarantees,” in Enterprise, Business-
Process and Information Systems Modeling, K. Gaaloul, R. Schmidt,
S. Nurcan, S. Guerreiro, and Q. Ma, Eds. Springer International
Publishing, vol. 214, pp. 85–101, series Title: Lecture Notes
in Business Information Processing. [Online]. Available: https:
//link.springer.com/10.1007/978-3-319-19237-6

[25] J. Evermann, “Scalable process discovery using map-reduce,” IEEE
Transactions on Services Computing, vol. 9, no. 3, pp. 469–481.
[Online]. Available: http://ieeexplore.ieee.org/document/6948229/

[26] A. Sankaran, “STrace inspector (v1.0.0-beta).” [Online]. Available:
https://doi.org/10.5281/zenodo.13325645

[27] D. Alvarez, “JUWELS cluster and booster: Exascale pathfinder with
modular supercomputing architecture at juelich supercomputing centre,”
Journal of large-scale research facilities- JLSRF, vol. 7, p. A183.
[Online]. Available: https://jlsrf.org/index.php/lsf/article/view/183

[28] S. Graf and O. Mextorf, “JUST: Large-scale multi-tier storage
infrastructure at the jülich supercomputing centre,” Journal of large-
scale research facilities JLSRF, vol. 7, p. A180. [Online]. Available:
https://jlsrf.org/index.php/lsf/article/view/180

[29] M. P. I. Forum, “MPI-2: Extensions to the message-passing
interface.” [Online]. Available: https://www.mpi-forum.org/docs/mpi-2.
1/mpi21-report.pdf

http://ieeexplore.ieee.org/document/6152102/
https://dl.acm.org/doi/10.1145/1048935.1050189
http://portal.acm.org/citation.cfm?doid=236017.236027
http://portal.acm.org/citation.cfm?doid=236017.236027
http://ieeexplore.ieee.org/document/1437288/
http://ieeexplore.ieee.org/document/5289150/
https://link.springer.com/10.1007/978-3-031-32041-5
http://link.springer.com/10.1007/978-3-642-31476-6
http://link.springer.com/10.1007/978-3-540-68564-7
https://ieeexplore.ieee.org/document/9150354/
https://ieeexplore.ieee.org/document/9150354/
http://ieeexplore.ieee.org/document/5470424/
https://link.springer.com/10.1007/978-3-319-16012-2
https://link.springer.com/10.1007/978-3-319-16012-2
https://link.springer.com/chapter/10.1007/978-3-031-08848-3_2
https://zenodo.org/record/7817732
https://linkinghub.elsevier.com/retrieve/pii/S187705091501128X
https://github.com/strace/strace/releases/tag/v6.9
https://github.com/strace/strace/releases/tag/v6.9
https://dl.acm.org/doi/10.1145/3624062.3624207
https://link.springer.com/10.1007/978-3-319-16012-2
https://link.springer.com/10.1007/978-3-319-16012-2
http://ieeexplore.ieee.org/document/6493640/
http://ieeexplore.ieee.org/document/6493640/
https://link.springer.com/10.1007/978-3-031-40843-4
https://dl.acm.org/doi/10.1145/2159352.2159356
http://link.springer.com/10.1007/978-3-662-49851-4
http://link.springer.com/10.1007/978-3-662-49851-4
https://link.springer.com/10.1007/978-3-319-19237-6
https://link.springer.com/10.1007/978-3-319-19237-6
http://ieeexplore.ieee.org/document/6948229/
https://doi.org/10.5281/zenodo.13325645
https://jlsrf.org/index.php/lsf/article/view/183
https://jlsrf.org/index.php/lsf/article/view/180
https://www.mpi-forum.org/docs/mpi-2.1/mpi21-report.pdf
https://www.mpi-forum.org/docs/mpi-2.1/mpi21-report.pdf

	Introduction
	Related Works
	The Input Data
	The DFG Synthesis
	Construction of the Directly-Follows-Graph
	Activity Statistics
	Performance Comparisons via Graph Coloring

	Experiments
	Single Shared File vs File Per Process
	With vs Without MPI-IO Interface

	Conclusion
	References

