001037211 001__ 1037211
001037211 005__ 20250203133245.0
001037211 0247_ $$2doi$$a10.1002/elsa.202400041
001037211 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00544
001037211 0247_ $$2WOS$$aWOS:001394035400001
001037211 037__ $$aFZJ-2025-00544
001037211 082__ $$a540
001037211 1001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b0$$eCorresponding author$$ufzj
001037211 245__ $$aWater Electrolysis Facing the Gigawatt Challenge—Comprehensive De-Risking of Proton Exchange Membrane and Anion Exchange Membrane Electrolyser Technology
001037211 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co KGaA$$c2025
001037211 3367_ $$2DRIVER$$aarticle
001037211 3367_ $$2DataCite$$aOutput Types/Journal article
001037211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736853654_6295
001037211 3367_ $$2BibTeX$$aARTICLE
001037211 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037211 3367_ $$00$$2EndNote$$aJournal Article
001037211 520__ $$aGreen Hydrogen (H2) is generally considered to play a key role in enabling sustainable energy storage, as well as a renewable feedstock to various industrial sectors. Accordingly, the production of H2 by water electrolysis at an industrial scale is a key prerequisite for a transformation of our energy system. With respect to water electrolysis, proton exchange membrane (PEM) electrolysers are generally considered a technology option for the production of green H2 on a large scale. Prior to market ramp-up PEM electrolysers have to undergo substantial de-risking for a technology ramp-up. For a comprehensive de-risking, a fundamental and holistic understanding of the degradation phenomena of electrolysers on an industrially relevant scale is a prerequisite. Field data with different application-specific load profiles needs to be acquired in order to develop countermeasures against possible degradation patterns induced by the operational mode. This is not only crucial for the more mature PEM technology but also in the future relevant for other more novel membrane electrolysis technologies such as anion exchange membrane (AEM) looking to make the step from laboratory operation to large-scale production and deployment. This editorial aims to outline the current status and general workflow of the de-risking process and serve as an introduction to the topics of this special issue ranging from fundamental studies on degradation processes on the catalyst level up to novel factory concepts for ramping up of electrolyser production.
001037211 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001037211 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037211 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b1
001037211 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b2
001037211 7001_ $$0P:(DE-HGF)0$$aDobrenizki, Ladislaus$$b3
001037211 7001_ $$0P:(DE-HGF)0$$aSchmid, Günter$$b4
001037211 7001_ $$0P:(DE-HGF)0$$aGeskes, Peter$$b5
001037211 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001037211 770__ $$aTowards Water Electrolysis at Scale: De-Risking of AEM&PEM-Electrolysis
001037211 773__ $$0PERI:(DE-600)2984616-X$$a10.1002/elsa.202400041$$gp. e202400041$$p1-9$$tElectrochemical science advances$$v1$$x2698-5977$$y2025
001037211 8564_ $$uhttps://juser.fz-juelich.de/record/1037211/files/Electrochemical%20Science%20Adv%20-%202025%20-%20Karl%20-%20Water%20Electrolysis%20Facing%20the%20Gigawatt%20Challenge%20Comprehensive%20De%E2%80%90Risking%20of.pdf$$yOpenAccess
001037211 909CO $$ooai:juser.fz-juelich.de:1037211$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b0$$kFZJ
001037211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b1$$kFZJ
001037211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b2$$kFZJ
001037211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001037211 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001037211 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001037211 9141_ $$y2025
001037211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001037211 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037211 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001037211 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
001037211 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:09:35Z
001037211 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:09:35Z
001037211 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-12
001037211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001037211 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-12
001037211 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037211 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001037211 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-12
001037211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001037211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001037211 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:09:35Z
001037211 920__ $$lyes
001037211 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001037211 980__ $$ajournal
001037211 980__ $$aVDB
001037211 980__ $$aUNRESTRICTED
001037211 980__ $$aI:(DE-Juel1)IET-1-20110218
001037211 9801_ $$aFullTexts