001     1037215
005     20250203103207.0
024 7 _ |2 doi
|a 10.2139/ssrn.4969962
037 _ _ |a FZJ-2025-00548
082 _ _ |a 330
100 1 _ |0 P:(DE-Juel1)198986
|a Kuppa, Raman Ashoke
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Data-Driven Surrogate Modeling Framework for Performance Prediction and Sensitivity Analysis of a Proton Exchange Membrane Water Electrolyzer
260 _ _ |a [S.l.]
|b Social Science Electronic Publ.
|c 2024
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1736861465_15027
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a Proton exchange membrane electrolytic cell (PEMEC) are complex multivariate electrochemical systems that have emerged as a prominent technology for generating green hydrogen. To reduce costs and accelerate the commercial deployment of PEMECs, it is crucial to develop accurate predictive models that enable to capture the inherent nonlinearities of PEM electrolyzers efficiently. Therefore, in this study, we develop data-based surrogate models for PEMEC with supported and unsupported catalyst layers using support vector regression (SVR), extreme gradient boosting (XGB), and artificial neural networks (ANN) machine learning techniques. These models are developed by using the datasets obtained from an analytical model and a physics-based one-dimensional numerical model of PEMEC. The dataset obtained from the one-dimensional model was split into datasets for supported and unsupported catalyst layers, based on the electronic conductivity of the anodecatalyst. The performance prediction of these three models is evaluated and compared with physics-based modeling results. We find that both ANN and XGB models performwell in predicting the cell current density. Therefore, the ANN model is selected to perform parametric analysis to investigate the effect of operating conditions and transport properties of the anode side. Both SHAP and sensitivity analysis reveal that the operating temperature is the most important parameter affecting the performance of the PEMEC. For supported catalyst layers, the influence of membrane thickness is greater than the catalyst’s electronic conductivity. However, in the case of unsupported catalysts layers, the SHAP values for electronic conductivity are found to be larger than membrane thickness
536 _ _ |0 G:(DE-HGF)POF4-1231
|a 1231 - Electrochemistry for Hydrogen (POF4-123)
|c POF4-123
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|c HITEC-20170406
|x 1
700 1 _ |0 P:(DE-Juel1)203319
|a Hammacher, Linus
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)157700
|a Kungl, Hans
|b 2
700 1 _ |0 P:(DE-Juel1)191359
|a Karl, André
|b 3
700 1 _ |0 P:(DE-Juel1)161579
|a Jodat, Eva
|b 4
700 1 _ |0 P:(DE-Juel1)156123
|a Eichel, Rüdiger-A.
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)194150
|a Karyofylli, Violeta
|b 6
773 _ _ |0 PERI:(DE-600)2234654-5
|a 10.2139/ssrn.4969962
|t SSRN eLibrary
|x 1556-5068
|y 2024
856 4 _ |u https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4969962
909 C O |o oai:juser.fz-juelich.de:1037215
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)198986
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)198986
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)203319
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)203319
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157700
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)191359
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161579
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156123
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)156123
|a RWTH Aachen
|b 5
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)194150
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-123
|1 G:(DE-HGF)POF4-120
|2 G:(DE-HGF)POF4-100
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-1231
|a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|v Chemische Energieträger
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21