001     1037239
005     20250203133239.0
024 7 _ |a 10.1002/hbm.26776
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00572
|2 datacite_doi
024 7 _ |a 38958131
|2 pmid
024 7 _ |a WOS:001260701700001
|2 WOS
037 _ _ |a FZJ-2025-00572
082 _ _ |a 610
100 1 _ |a Asendorf, Adrian L.
|0 P:(DE-Juel1)194475
|b 0
|e First author
245 _ _ |a Dynamic properties in functional connectivity changes and striatal dopamine deficiency in Parkinson's disease
260 _ _ |a New York, NY
|c 2024
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738136709_6366
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Deutsche Forschungsgemeinschaft (DFG,German Research Foundation), Grant/AwardNumbers: 431549029, 413543196
520 _ _ |a Recent studies in Parkinson's disease (PD) patients reported disruptions in dynamic functional connectivity (dFC, i.e., a characterization of spontaneous fluctuations in functional connectivity over time). Here, we assessed whether the integrity of striatal dopamine terminals directly modulates dFC metrics in two separate PD cohorts, indexing dopamine-related changes in large-scale brain network dynamics and its implications in clinical features. We pooled data from two disease-control cohorts reflecting early PD. From the Parkinson's Progression Marker Initiative (PPMI) cohort, resting-state functional magnetic resonance imaging (rsfMRI) and dopamine transporter (DaT) single-photon emission computed tomography (SPECT) were available for 63 PD patients and 16 age- and sex-matched healthy controls. From the clinical research group 219 (KFO) cohort, rsfMRI imaging was available for 52 PD patients and 17 age- and sex-matched healthy controls. A subset of 41 PD patients and 13 healthy control subjects additionally underwent 18F-DOPA-positron emission tomography (PET) imaging. The striatal synthesis capacity of 18F-DOPA PET and dopamine terminal quantity of DaT SPECT images were extracted for the putamen and the caudate. After rsfMRI pre-processing, an independent component analysis was performed on both cohorts simultaneously. Based on the derived components, an individual sliding window approach (44 s window) and a subsequent k-means clustering were conducted separately for each cohort to derive dFC states (reemerging intra- and interindividual connectivity patterns). From these states, we derived temporal metrics, such as average dwell time per state, state attendance, and number of transitions and compared them between groups and cohorts. Further, we correlated these with the respective measures for local dopaminergic impairment and clinical severity. The cohorts did not differ regarding age and sex. Between cohorts, PD groups differed regarding disease duration, education, cognitive scores and L-dopa equivalent daily dose. In both cohorts, the dFC analysis resulted in three distinct states, varying in connectivity patterns and strength. In the PPMI cohort, PD patients showed a lower state attendance for the globally integrated (GI) state and a lower number of transitions than controls. Significantly, worse motor scores (Unified Parkinson's Disease Rating Scale Part III) and dopaminergic impairment in the putamen and the caudate were associated with low average dwell time in the GI state and a low total number of transitions. These results were not observed in the KFO cohort: No group differences in dFC measures or associations between dFC variables and dopamine synthesis capacity were observed. Notably, worse motor performance was associated with a low number of bidirectional transitions between the GI and the lesser connected (LC) state across the PD groups of both cohorts. Hence, in early PD, relative preservation of motor performance may be linked to a more dynamic engagement of an interconnected brain state. Specifically, those large-scale network dynamics seem to relate to striatal dopamine availability. Notably, most of these results were obtained only for one cohort, suggesting that dFC is impacted by certain cohort features like educational level, or disease severity. As we could not pinpoint these features with the data at hand, we suspect that other, in our case untracked, demographical features drive connectivity dynamics in PD. PRACTITIONER POINTS: Exploring dopamine's role in brain network dynamics in two Parkinson's disease (PD) cohorts, we unraveled PD-specific changes in dynamic functional connectivity. Results in the Parkinson's Progression Marker Initiative (PPMI) and the KFO cohort suggest motor performance may be linked to a more dynamic engagement and disengagement of an interconnected brain state. Results only in the PPMI cohort suggest striatal dopamine availability influences large-scale network dynamics that are relevant in motor control.Keywords: DAT SPECT; F‐DOPA PET; dynamic functional connectivity; imaging; network; resting‐state fMRI.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)
|0 G:(GEPRIS)431549029
|c 431549029
|x 1
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Theis, Hendrik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tittgemeyer, Marc
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Timmermann, Lars
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 4
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 5
700 1 _ |a Eggers, Carsten
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ruppert-Junck, Marina C.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pedrosa, David J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hoenig, Merle C.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a van Eimeren, Thilo
|0 P:(DE-Juel1)207799
|b 10
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/hbm.26776
|g Vol. 45, no. 10, p. e26776
|0 PERI:(DE-600)1492703-2
|n 10
|p e26776
|t Human brain mapping
|v 45
|y 2024
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/1037239/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037239
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)177611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)207799
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-19
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:07:28Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21