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Recent studies in Parkinson's disease (PD) patients reported disruptions in dynamic

functional connectivity over time). Here, we assessed whether the integrity of striatal
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Numbers: 431549029, 413543196 implications in clinical features. We pooled data from two disease-control cohorts

indexing dopamine-related changes in large-scale brain network dynamics and its

reflecting early PD. From the Parkinson's Progression Marker Initiative (PPMI) cohort,
resting-state functional magnetic resonance imaging (rsfMRI) and dopamine trans-
porter (DaT) single-photon emission computed tomography (SPECT) were available
for 63 PD patients and 16 age- and sex-matched healthy controls. From the clinical
research group 219 (KFO) cohort, rsfMRI imaging was available for 52 PD patients
and 17 age- and sex-matched healthy controls. A subset of 41 PD patients and
13 healthy control subjects additionally underwent ®F-DOPA-positron emission
tomography (PET) imaging. The striatal synthesis capacity of ®F-DOPA PET and
dopamine terminal quantity of DaT SPECT images were extracted for the putamen
and the caudate. After rsfMRI pre-processing, an independent component analysis

was performed on both cohorts simultaneously. Based on the derived components,

an individual sliding window approach (44 s window) and a subsequent k-means
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1 | INTRODUCTION

clustering were conducted separately for each cohort to derive dFC states (reemer-
ging intra- and interindividual connectivity patterns). From these states, we derived
temporal metrics, such as average dwell time per state, state attendance, and number
of transitions and compared them between groups and cohorts. Further, we corre-
lated these with the respective measures for local dopaminergic impairment and clini-
cal severity. The cohorts did not differ regarding age and sex. Between cohorts, PD
groups differed regarding disease duration, education, cognitive scores and L-dopa
equivalent daily dose. In both cohorts, the dFC analysis resulted in three distinct
states, varying in connectivity patterns and strength. In the PPMI cohort, PD patients
showed a lower state attendance for the globally integrated (Gl) state and a lower
number of transitions than controls. Significantly, worse motor scores (Unified Parkin-
son's Disease Rating Scale Part Ill) and dopaminergic impairment in the putamen and
the caudate were associated with low average dwell time in the Gl state and a low
total number of transitions. These results were not observed in the KFO cohort: No
group differences in dFC measures or associations between dFC variables and dopa-
mine synthesis capacity were observed. Notably, worse motor performance was asso-
ciated with a low number of bidirectional transitions between the Gl and the lesser
connected (LC) state across the PD groups of both cohorts. Hence, in early PD, rela-
tive preservation of motor performance may be linked to a more dynamic engage-
ment of an interconnected brain state. Specifically, those large-scale network
dynamics seem to relate to striatal dopamine availability. Notably, most of these
results were obtained only for one cohort, suggesting that dFC is impacted by certain
cohort features like educational level, or disease severity. As we could not pinpoint
these features with the data at hand, we suspect that other, in our case untracked,

demographical features drive connectivity dynamics in PD.

Practitioner Points

e Exploring dopamine's role in brain network dynamics in two Parkinson's dis-
ease (PD) cohorts, we unraveled PD-specific changes in dynamic functional
connectivity.

e Results in the Parkinson's Progression Marker Initiative (PPMI) and the KFO
cohort suggest motor performance may be linked to a more dynamic engage-
ment and disengagement of an interconnected brain state.

e Results only in the PPMI cohort suggest striatal dopamine availability influences

large-scale network dynamics that are relevant in motor control.

KEYWORDS

DAT SPECT, dynamic functional connectivity, F-DOPA PET, imaging, network, resting-
state fMRI

Pirker, 2003), and higher-order cognitive tasks (Cools, 2011; Costa
et al., 2014). From a network-based perspective, this suggests dopa-

Parkinson's disease (PD) is characterized by a degeneration of the
nigrostriatal dopaminergic neurons, causing a wide range of motor
and non-motor symptoms. Region-specific associations have revealed
a strong relationship between striatal dopamine availability, motor
symptom severity (Asenbaum et al., 1997; Benamer et al., 2000;

mine is a crucial player in effectively recruiting large-scale networks
associated with these cognitive and motor domains. Using resting-
state functional magnetic resonance imaging (rsfMRI) to investigate
connectivity across different networks has repeatedly shown that the
putamen, which is known to express the most prominent striatal
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dopamine reduction in clinical PD, loses connectivity strength with
frontal brain structures (Rolinski et al., 2016). Further, in recent multi-
modal approaches incorporating dopamine positron emission tomog-
raphy (PET) or dopamine transporter (DaT) single-photon emission
computed tomography (SPECT), it has been illustrated that the degen-
eration of nigrostriatal connectivity functionally impairs distinct stria-
tocortical (Ruppert et al., 2020) and putamen-midbrain (Rieckmann
et al., 2015) projections.

Additionally, an increase in dopaminergic deficit was associated
with decreased putaminal interconnectivity over time (Li et al., 2020).
These studies suggest that dopamine is fundamental for the efficient
interplay between motor processing areas and parts of the basal gang-
lia. Interestingly, PD-specific changes in large-scale network organiza-
tion normalize after taking dopaminergic medication (P. T. Bell
et al., 2015; Cole et al., 2013; Wu et al., 2009). Thus, network conse-
quences of dopamine loss may not be limited to brain regions directly
connected to the basal ganglia. However, how striatal dopamine defi-
ciency specifically perturbs the interplay of large-scale brain networks
remains unresolved.

Notably, most of these studies assessing network organization
modulated by dopamine capacity in PD have typically assumed tem-
poral stability and, hence, time-averaged functional networks across
the resting-state data acquisition. However, functional networks
dynamically fluctuate within scales of seconds and minutes (Chang &
Glover, 2010). Incorporating the temporal features of spontaneous
functional connectivity (FC) fluctuations in a dynamic FC analysis
(dFC) aims to characterize these dynamics. How well the fluctuations
in FC are aligned with actual brain dynamics is currently under debate.
However, the note that dFC captures actual neural dynamics in the
brain is supported by a growing body of literature (for review, see
Lurie et al., 2020). Thus, dFC has been suggested to index changes in
macroscopic neural activity patterns underlying critical aspects of cog-
nition and behavior (Calhoun et al., 2014; Hutchison et al., 2013;
Liégeois et al., 2019; Vidaurre et al., 2021). As dFC provides additional
information about the temporal profile of brain function, it proposes
the potential to improve our understanding of impaired brains and
their changes in disorders. In fact, compared to the static approach,
growing evidence suggests dFC to be a sensitive indicator for deter-
mining disability level (Tozlu et al., 2021) and distinguishing between
individuals with pathological conditions and those without (Jin
et al, 2017; Rashid et al., 2016). Concomitantly, altered network
dynamics have been reported for various neuro-psychiatric conditions
like schizophrenia (Damaraju et al., 2014; Fu et al., 2018; Sakoglu
et al, 2010; Yue et al, 2018), dementia (Cérdova-Palomera
et al., 2017; Jones et al., 2012; Schumacher et al., 2019), autism
(de Lacy et al., 2017), major depression (Kaiser et al., 2015; Zhi
et al., 2018), or epilepsy (Liu et al., 2017).

In PD, several recent whole-brain dFC accounts suggested the
relevance of network dynamics in the clinical presentation of PD (Cao
et al., 2023; Cordes et al., 2018; Diez-Cirarda et al., 2018; Fiorenzato
et al., 2019; J. Kim et al., 2017). Importantly, these studies could show
that PD-specific changes in dFC were linked to motor symptom sever-
ity (J. Kim et al, 2017), mild cognitive impairment (Diez-Cirarda
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et al, 2018; Fiorenzato et al, 2019), PD dementia (Fiorenzato
et al., 2019), and autonomic dysfunction (Cao et al., 2023). Together,
these studies emphasize that motor and cognitive impairments in PD
appear to be driven by spatial and temporal alterations of large-scale
network dynamics. However, reports concerning dFC in PD are incon-
sistent. While some studies suggested PD to be associated with a
higher occurrence of highly interconnected states (i.e., reoccurring
patterns of FC across time) (Diez-Cirarda et al, 2018; Kim
et al., 2017), others demonstrated PD (Fiorenzato et al., 2019) and PD
progression (Cao et al., 2023) to be associated with a higher occur-
rence of sparsely connected states. These inconsistent findings, how-
ever, may be due to methodological differences in data analyses and
study design. Moreover, the currently available studies employing
dFC in PD are limited to correlations with behavior or clinical severity
and do not use quantified information about the degree of dopami-
nergic terminal loss. Direct investigations of the modulatory role of
dopamine on dynamic network fluctuations are currently missing.

To this end, we analyzed datasets of two age- and sex-matched
cohorts. The Parkinson's Progression Marker Initiative (PPMI) data set
(https://www.ppmi-info.org/study-design/study-cohorts) included
rsfMRI for 63 PD patients and 16 controls and DaT-SPECT as a mea-
sure for presynaptic dopaminergic dysfunction. In comparison, the
KFO  dataset (https://gepris.dfg.de/gepris/projekt/101434521?
language=en) comprised 52 PD patients and 17 controls, including
18F_Dopa PET as the measure of presynaptic dopaminergic impair-
ment. The objectives of our study were as follows: First, to probe the
reproducibility of our dFC analysis in two different PD cohorts. Sec-
ond, to investigate the relationship between dopamine deficiency and
large-scale network dynamics. To achieve this, we obtained PD-
specific dFC changes by comparing the dFC variables of a healthy
control group with a PD group for each cohort separately. Conse-
quently, we tested whether these PD-specific dFC changes were
associated with clinical cognition, motor scores, and dopamine avail-
ability in the striatum. We suspected PD-specific changes in dFC to
appear in both groups. According to the literature discussed above,
we expected these to be associated with either motor or cognitive
function and dopaminergic deficit in the striatum.

2 | MATERIALS AND METHODS

21 | Participants

Data used for this study included two different cohorts. The first
cohort included subjects enrolled in the Clinical Research Group
219 (KFO219) in Cologne. For the KFO cohort, rsfMRI and structural
MRI data of 52 PD patients and 17 healthy controls were available. A
subset of 41 PD patients and 13 healthy control subjects additionally
underwent 8F-DOPA-PET imaging. The average time difference
between MRI and !8F-DOPA-PET imaging was 29 days (SEM
8.05 days). All PD patients fulfilled the UK Brain Bank Criteria for PD
(Gibb & Lees, 1988). All participants gave informed consent. The study
was approved by the local ethics committee (EK12-265).
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The second cohort was matched to the KFO cohort regarding age
and sex and was composed of individuals registered in the PPMI. The
PPMI dataset included 63 PD patients and 16 age- and sex-matched
healthy controls. These subjects (1) had undergone a fixed rsfMRI pro-
tocol (see MRI acquisition), (2) were between 50 and 85 years old,
and (3) had data of structural MRI, Unified Parkinson's Disease Rating
Scale (UPDRS)-OFF, and DaT-SPECT imaging available. For PD indi-
viduals, the absolute time difference between the acquisition time
points of these data and the rsfMRI acquisition date did not exceed
182 days. The PD group's average time difference between the DaT
scan and rsfMRI acquisition was 12 days (SEM 2.29). For the control
group, the difference was 728 days (SEM 165.22). All PD patients had
a diagnosis of PD and exhibited bradykinesia and at least one of the
following: resting tremor and/or rigidity.

Exclusion criteria for both cohorts included a history of other
severe or neurological diseases and/or current medication that affects
brain function, a clinical diagnosis of dementia, and MRI safety exclu-
sion criteria. Any quality defects of the rsfMRI, like artifacts, phan-
toms, tilted planes, or cuts in the cortex, were excluded. The
demographic characteristics of the two cohorts are summarized in
Table 1.

2.2 | Clinical assessment

In both cohorts, disease severity in PD patients was assessed using
the Movement Disorder Society UPDRS Part lll (Goetz et al., 2008) in
an unmedicated state (OFF). For the KFO dataset, this represented at
least 12 h of withdrawal of dopamine replacement therapy or 72 h for
extended release of dopamine agonists. In the PPMI cohort, 31 PD
patients were taking medication. These subjects discontinued dopami-
nergic medication at least 6 h (16 h on average) before clinical exami-
nation (UPDRS-III). Furthermore, the Mini Mental State Examination
(MMSE) in the KFO dataset and the Montreal Cognitive Assessment
(MoCA) in the PPMI cohort were used as proxies for cognitive func-
tion. To establish comparability of these two tests, we converted the
MoCA scores to MMSE scores according to a recently introduced
table (Fasnacht et al., 2023).

2.3 | Assessment of dopamine loss

Measures of presynaptic dopamine deficiency were used to assess
the possible impact of striatal dopamine availability on large-scale net-
work connectivity dynamics. In the KFO cohort, *8F-DOPA-PET imag-
ing was used, which was acquired for a subset of 56 subjects on a
24-detector ring scanner (ECAT EXACT HRRT, Siemens) at the Max-
Planck-Institute for Metabolism Research in Cologne. ®F-DOPA-PET
was performed in the morning after overnight fasting and OFF dopa-
minergic medication. The image processing procedure was previously
described elsewhere (Hammes et al., 2019). Briefly, dopamine metab-
olism was assessed using a reference tissue model (Patlak plot) on
dynamic scans comprising nine movement-corrected and spatially nor-
malized frames. This data processing resulted in images exclusively

representing the striatum's presynaptic dopamine synthesis capacity.
Finally, the mean presynaptic dopamine synthesis capacity was
extracted from four striatal volumes of interest (VOlIs): the left and
right putamen and caudate nucleus.

In the PPMI cohort, DaT-SPECT imaging was carried out in differ-
ent imaging centers on different scanners. DaT-SPECT imaging was
performed according to the PPMI standardized protocol to quantify
DaTs in the striatum. Each imaging center reconstructed SPECT
images using a standard iterative reconstruction algorithm and then
corrected them for attenuation. Detailed imaging protocols can be
comprehended  here: https://www.ppmi-info.org/study-design/
research-documents-and-sops. Our analysis used mean putamen and
caudate values for both cohorts.

24 | MRI acquisition

An anatomical T1-weighted MRI and an rsfMRI series were acquired for
each participant. In KFO, the structural T1-weighted images were
obtained on a 3.0 T Siemens Magnetom Prisma scanner using multiband
(SMS factor of 8) scanning combined with a 64 channel coil. The acquisi-
tion parameters were set as follows: repetition time (TR) = 2300 ms,
echo time =232 ms, flip angle = 8°, field of view =230 mm, slice
thickness = 0.90 mm, voxel size =0.9 x 0.9 x 0.9 mm, number of
slices = 192. The rsfMRI series included a gradient echo-planar imaging
sequence with interleaved acquisition mode using the following parame-
ters: TR=0.776 ms, echo time =374 ms, flip angle =55°, field
view = 208 mm, voxel size =2.0 x 2.0 x 2.0 mm, slice
thickness = 2 mm. The acquisition time was 8 min and contained
617 time points comprised of 72 axial slices each.

In PPMI, the structural images were acquired on 3.0 T Siemens
Magnetom scanners (Trio-A-Tim, Verio, or Prisma) using a slice thick-
ness of 1 mm. The rsfMRI series used in the PPMI cohort was carried
out in interleaved acquisition mode running the following protocol:
TR =2400 ms, echo time=25.0ms, voxel size= 3.3 x 3.3 x
3.3 mm, slice thickness 3.3 mm. The acquisition time was 8 min and
24 s, containing 210 time points composed of 40 axial slices each.

In both cohorts, subjects were asked to keep their eyes open and
remain still.

2.5 | fMRIdata preprocessing and motion control
Preprocessing was carried out using the CONN toolbox v20.b
(Whitfield-Gabrieli & Nieto-Castanon, 2012) implemented in MATLAB
(Matlab R2020b Update 4, MathWorks, Inc., Natick, Massachusetts,
United States). A default preprocessing pipeline was used to normalize
the images to the MNI (Montreal Neurological Institute) space (web.
conn-toolbox.org/fmri-methods/preprocessing-pipeline). The pipeline
includes spatial realignment, slice-timing correction, outlier identifica-
tion, segmentation, normalization, and smoothing (Gaussian kernel
8 mm full-width half maximum).

Using the artifact removal tool included in CONN potential outlier
scans caused by subject motion were identified, yielding six-
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dimensional motion vectors composed of translational (x, y, z axes)
and rotational (pitch, yaw, roll) displacement scores. These six dis-
placement scores were each transformed into single framewise
displacement (FD) values using a published formula (Power
et al., 2012). Acquisitions were discarded if they showed a mean
FD > % voxel size (1 mm in KFO and 1.65 mm in PPMI) and/or a maxi-
mum displacement of more than one voxel (2 mm in KFO and 3.3 mm
in PPMI). According to these criteria, four PD patients and two
healthy controls were excluded from the KFO cohort, resulting in a
global mean FD of 0.19 mm for the final cohort. Finally, two PD
patients and two healthy controls were excluded from the PPMI
cohort, which resulted in an average FD of 0.34 mm.

2.6 | Identification of intrinsic connectivity
networks
2.6.1 | Dimensionality reduction and group

component definition

Independent group components were identified in a data-driven
approach by means of data reduction and a spatial independent com-
ponent analysis (ICA) utilizing the Group ICA fMRI toolbox (GIFT)
(v3.0c, https://trendscenter.org/software/gift/). To obtain compara-
ble components between the two cohorts, the group component
identification was conducted in a pooled approach on all subjects of
the two cohorts, involving healthy controls and PD patients (see
Figure 2 left). The applied data reduction and ICA protocol followed
previous dFC analyses (Allen et al., 2014; Damaraju et al., 2014; Diez-
Cirarda et al., 2018; Fiorenzato et al., 2019; J. Kim et al., 2017): On
the subject level, a principal component analysis (PCA) reduced the
data to 120 principal components (PCs). At the group level,
the concatenated reduced data was condensed to 100 PCs using the
expectation maximization algorithm for PCA (Roweis, 1998). Follow-
ing the data reduction step, a Infomax ICA algorithm (Himberg
et al., 2004) decomposed the group-level data into independent net-
works (A. J. Bell & Sejnowski, 1995), producing a single set of
100 group independent components (ICs). Reliability through process
stability was ensured by repeating the Infomax algorithm 20 times
using the ICASSO method. Only components with a stability index
>0.9 were selected, leaving 76 ICs for spatial characterization. There-
after, a GICA-based back-reconstruction step was added to compute
individual subject-specific spatial maps required for further analysis
(Calhoun et al., 2001).

2.6.2 | Feature identification and thresholding

Of the 76 stable ICs, we identified 57 independent network compo-
nents (INCs) utilizing identification criteria previously described (Allen
et al.,, 2011; Allen et al., 2014): (1) peak activations located primarily in

the gray matter, (2) low spatial overlap with known vascular and
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ventricular spaces, and (3) low susceptibility for artifacts. The resulting
57 INCs were subsequently grouped into 14 previously established
resting-state networks (RSNs) (Allen et al., 2014; Shirer et al., 2012):
Using the Dice similarity coefficient (a measure of spatial overlap), the
INCs were sorted according to their highest spatial overlap with one
of the RSNs. In seven instances, a single INC had a similar spatial over-
lap with several RSNs. For these cases, one of the RSN options was
chosen by the shared decision of two experts (M.H., T.v.E.). An over-
view of the component patterns and corresponding RSNs can be
found in Figure 1. With the preceding steps, including data reduction,
ICA, feature identification, and back-reconstruction, we defined RSNs
that share comparable activation patterns and anatomical locations
across each individual and both cohorts. This approach enabled us to
assess changes in RSN connectivity and compare these changes

between individuals, groups, and cohorts.

2.7 | dFC analysis

The dFC analysis was conducted separately for each cohort. Using the
temporal dFNC toolbox in GIFT, we combined two approaches:
The sliding window approach, which determines changes in FC across
time in single subjects, and the k-means clustering algorithm, which
enables the extraction of reoccurring patterns of FC across time (see
Figure 2 right).

271 | Sliding window approach

The sliding window approach was applied on time courses of the
back-reconstructed subject-specific spatial maps obtained from
the ICA, including both cohorts. Therefore, the same subject-specific
maps were used in both analyses. These time courses were analyzed
in frames of a defined length, called windows. The first window was
set at the beginning of a time course and was then moved along the
data by a predefined number of data points, defined as step variable.
For each window, a covariance matrix was calculated, portraying the
connectivity as covariance (correlation) between all INCs at that par-
ticular time. Each covariance matrix was composed of (57 x (57-
1)/2 = 1596) features. Following previously established methods
(Allen et al., 2014), a tapered window of 44 s (57 TRs in KFO and
18 TRs in PPMI) was used, which was convolved with a Gaussian ker-
nel of 3 TR. The window was moved by 1TR steps along the
617 (KFO) and 210 (PPMI) TR scan, resulting in 493 (KFO) and
174 (PPMI) consecutive windows and their corresponding FC esti-
mates (covariance matrices). Prior to further analysis, the FC estimates
were Fisher Z transformed to improve the normality of Pearson's
r distribution. To investigate the potential effect of TR, we matched
the TRs of the two samples by down-sampling the KFOs TR to
2.328 ms (average of three scans with a TR of 0.776 ms). The results
were comparable for manipulated and unmanipulated TR. Hence, the

TRs for the current analysis were not altered.
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2.7.2 | Clustering analysis

We applied the k-means clustering algorithm to all windowed FC
estimates to assess reoccurring FC patterns. For each cohort, the
clustering algorithm was initially performed on a defined subset of
exemplary windows, chosen as the windows with local maxima in
FC variance, and repeated 500 times on this set. The resulting cen-
troids (cluster medians) were then used to initialize the clustering
of all data on 69 subjects times 493 windows, equating to 35.496
instances in the case of KFO and 79 subjects times 174 windows,
equating to 13,746 instances in the PPMI cohort. The similarity
between each FC estimate and the cluster centers was determined
using the L1 distance function (Aggarwal et al., 2001). The optimal
number of clusters (k) was defined using the Elbow criterion, which
independently yielded four valid clusters (k = 4) in both cohorts.
Hence, based on the similarity of each FC matrix with the four
obtained cluster centroids, all respective FC matrices were then
categorized into one of the given four clusters (states). Reproduc-
ibility of the estimated states has previously been validated, show-
ing that k-means clustering results yielded reproducible cluster
centroids from both analyses with bootstrap resamples and split-
half samples of subjects (Allen et al., 2014).

2.7.3 | Global state characteristics

To derive and compare the connectivity pattern associated with a
state, connectivity matrices were calculated using in-house Python
scripts (Asendorf, 2024; Damaraju et al., 2014): First, a subject
median was computed for each state based on the subject win-
dows assigned to that state. Second, subject medians for each
state were used to derive median connectivity matrices for each
state per cohort (see Figure 3). A state's connectivity strength was
defined as the absolute sum of all correlation values in its median
connectivity matrix. Notably, only correlation values higher or
respectively lower than 10% of the highest and lowest correlation
values were included to reduce the impact of noise on our mea-
sure. To define the proportionate similarity between two states,
the Manhattan distance was calculated. According to the Manhat-
tan distance, the most similar states were matched between
cohorts. Next, to create state similarity profiles, we compared each
individual tile (i.e., covariance of one INC with another) between
the two matched states, respectively. For that purpose, we used
Mann-Whitney U tests on all available subject medians for each
tile (Asendorf, 2024; Damaraju et al., 2014). Hence, the compari-
son plots include the effect strength (r) of Mann-Whitney U tests
for each tile. Only the effect strengths of results that were signifi-
cant after FDR correction were reported. A state's occurrence was
defined as the percentage of windows assigned to it. In an attempt
to further characterize the connectivity pattern entailed in a state,
we reported between-network correlations that stood out upon

visual inspection.

274 | Calculation of temporal properties

Temporal properties of the dFC analysis were extracted, analyzed,
and plotted for each cohort separately using in-house Python scripts
(Asendorf, 2024): Based on the categorized data obtained by the clus-
tering analysis in GIFT, state transition vectors were created, repre-
senting the assigned state for each window for each participant. To
examine the temporal properties, we assessed four variables: average
dwell time, total number of transitions, bidirectional transitions, and
state attendance. The average dwell time was defined as the mean
time spent in a particular state. We also assessed the total number of
transitions between any states and the number of bidirectional transi-
tions between specific pairs of states. A state was considered as
attended if at least one window of that participant was assigned to

that particular state.

2.8 | Statistical analyses

All statistical analyses were carried out using R (Rstudio ver.
2022.12.0) and Python (Spyder; Python ver. 3.10). Given that assump-
tions of normality and homoscedasticity were not met in terms of the
dFC variables per cohort, nonparametric tests were applied. To mini-
mize the influence of potential covariates, we corrected our statistical
tests for age and sex. To this purpose, Whitney U tests were per-
formed on the residuals of a linear model predicting the variable
examined using age and sex. Further, Kendall's Tau correlations were
corrected for age and sex using the ppcor package in R (S. Kim, 2015).
Chi-squared tests cannot be corrected for covariates. However, all
variables labeled as significantly different between groups by the Chi-
squared test also showed a significant effect of group on the variable
examined in a logistic regression model correcting for age and sex.
Since PPMI is a multi-center cohort study, we sought to estimate the
effect of inter-scanner variability on our results. Therefore, these tests
were repeated with additional corrections for scanner identifiers.
However, inter-scanner variability did not appear to affect our results.
Thus, they were not reported in the results. Considering states with
generally low attendance are a potential cause for unreliable statistics,
we only included states attended by more than 50% of the cohort's
subjects. Hence, state four (23%) of the KFO cohort and state two
(23%) of the PPMI cohort were excluded from the statistical analyses.
Corrections for multiple comparisons were carried out using the Dunn
and Sidak criterion (Sidak, 1967).

2.8.1 | Group comparisons of dFC measures

Mann-Whitney U tests were performed to compare the PD and con-
trol groups in terms of variables derived from dFC analysis
(i.e., average dwell time, fraction time, and number of transitions). For
categorical variables like state attendance, Chi-squared tests were

utilized.
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2.8.2 | Correlation analyses—dFC Measures,
dopamine loss, and behavior

To assess whether dFC measures were associated with cognitive
test scores and motor performance, MMSE and UPDRS-III scores
were correlated with average dwell time and the number of total
and bidirectional transitions using two-sided rank correlation tests
(Kendall's Tau). Besides, to examine whether temporal properties
of a distinct state were associated with striatal dopamine signal,
rank correlations were carried out between the mean synthesis
capacity of the putamen and caudate VOIs and the dFC
measurements.

3 | RESULTS

3.1 | Group characteristics

In both cohorts (see Table 1), we found no significant differences
between the control group and the PD group in terms of sex, handed-
ness, age and MMSE. In both cohorts, PD subjects had significantly
fewer years of education and lower putaminal dopamine synthesis
capacity or DaT availability, respectively.

Across cohorts, PD subjects did not show significant differences
regarding sex, handedness, age, and UPDRS-IIl OFF scores. The PD
group included in the KFO study had fewer years of education, lower
MMSE scores, a higher L-dopa equivalent daily dose (LEDD), and a
longer disease duration compared to the PD group of the PPMI
cohort. Across cohorts, the KFO control group also showed lower
values on the MMSE compared to PPMI controls. Sex, handedness,
age, and education did not differ between the KFO control and the
PPMI control group.

3.2 | DynamicFC

3.2.1 | Global state characteristics
In both cohorts, we identified three distinct connectivity states that
reoccurred in individuals throughout a resting-state scan and were
present across subjects (see Figure 3).

For the KFO cohort, the two most frequently occurring states
(a total of 64% of all windows) showed the most similar connectivity
patterns (Manhattan distance of 119) across all state pairs (see
Figure 3, top middle and top right panel). They mainly differed in over-
all connectivity strength. One state was clearly more interconnected
with absolute correlation sums of 211.6 and 146.1, respectively.
Hence, this state will be referred to as the more interconnected state,
while the other state will be referred to as the lesser connected
(LC) state of this state pair. Upon visual inspection, the pair can be
characterized by strong correlations of the default mode network
(DMN) with itself and parts of the left executive network and the lan-
guage network. The other state occurred less frequently (a total of

WILEY_L ¢

22% of all windows) and exhibited high correlations for the ventral
DMN with the visual networks, the language network and parts of the
SMN, the auditory network, and the salience networks (see Figure 3
top left panel). As this state showed high interconnectivity for all RSN
despite the auditory network, the dorsal DMN, and parts of the SMN,
we will refer to this state as the globally integrated (GI) state.

Among all states of the PPMI cohort, two states exhibited the
highest similarity measured by Manhattan distance (Manhattan dis-
tance of 107) (see Figure 3. bottom middle and bottom right). These
states occurred by far the most (total of 73% of all windows) and pri-
marily differed in connectivity strength (absolute correlation sum of
107.8 vs. 178.0). Hence, one state of the pair will be referred to as
the more connected (MC) state, while the other will be termed the LC
state. The other state occurred least often (a total of 16% of all win-
dows) and showed a very distinctive connectivity pattern (see
Figure 3 bottom left panel). On visual assessment, this state presented
relatively high connectivity between the DMN, the primary visual, and
the somatomotor networks. Following the framework in the KFO
data, it will be referred to as the Gl state.

The similarity between the sorted state profiles between both
cohorts was described by Manhattan distance as follows: The highest
similarity for the Gl state and the LC state of the KFO cohort were
the Gl and the LC state of the PPMI cohort, respectively. For the MC
state of the KFO, the LC state of the PPMI cohort was most similar.
Further, upon visual inspection of the similarity matrices (see supple-
mentary Figure 1), the LC states showed the highest similarity, while
the MC and the Gl states showed less similarity. A thorough visual
assessment of the supplementary figure suggests that the indiffer-
ences between the MC and Gl states were especially driven by the

presence of negative correlations.

3.2.2 | Group differences in temporal properties
No significant group differences were found in terms of average dwell
time in the KFO cohort and the PPMI cohort (see Figure 4a).

We determined the number of subjects having at least once
dwelled in a state during acquisition, to compare state attendance
between the groups. In the KFO cohort, no group differences were
observed for state attendance. For the PPMI cohort, this yielded a
higher state attendance of the Gl state for the control group in con-
trast to the PD group (X*(1, N=79) =582, p=.016) (see
Figure 4b).

To determine further differences between groups, we compared
the total number of transitions as well as the bidirectional transitions
between pairs of states. For the KFO cohort, no group differences
could be reported regarding total and bidirectional transitions. When
assessing the distribution of the total number of transitions in the
PPMI cohort, controls exhibited a higher number of transitions than
PD patients in the (UN =79)=331, z=-2.10, p =.035) (see
Figure 4d). In terms of bidirectional transitions, controls showed a
higher number of transitions between the Gl and the MC state (U
(N=79)=276.5z= -2.77,p = .006) (see Figure 4c).
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FIGURE 1 Composite maps
of the 57 independent network
components (INCs) identified by
group independent component
analysis (ICA). Based on their
anatomical and functional
properties, 57 INCs were grouped
into the 14 resting-state
networks (RSNs) for FC
previously established by Shirer
et al., 2012. Each color in the
composite maps corresponds to a
single INC. The number of ICNs
sorted into each RSN is stated in
the bottom right corner of each
panel. DMN, default mode
network; LECN, left executive
network; RECN, right executive
network.

Basal Ganglla

3.23 | Correlation between striatal dopamine
availability, dFC measures, and clinical measures

dFC with clinical measures

We tested for an association between MMSE and UPDRS-III scores
with the number of bidirectional transitions, average dwell times, and
total number of transitions. In the KFO cohort, an association
between UPDRS-IIl scores and the number of bidirectional transitions
between the Gl and the LC state (r,(N = 52) = —.245; p = .012) was
observed in the PD group. For the MMSE scores, no associations with
dFC were found in the KFO cohort. In the PPMI cohort, a correlation

analysis revealed significant negative associations between UPDRS-III

#ICNs=1

#ICNs=2

N
ngher visual

Prlmary V|sual #ICNs=2

Sensorymotor #ICNs=10

motor scores and average time spent in the Gl state (z,(N = 63)
= —.276, p = .002) and the MC state (z,(N = 63) = —.201, p = .022).
Moreover, we found negative associations of the UPDRS-IIl and the
total number of transitions (z,(N = 63) = —.307, p < .001) and number
of bidirectional transitions between the Gl and the LC state
(tp(N = 63) = —.227, p=.010) and the MC and the LC
state (r,(N = 63) = —.213, p = .015) in the PD group. In the PPMI
cohort, no associations of dFC variables with MMSE were found.

Dopamine with clinical measures
In a subsequent step, we tested whether dopaminergic insufficiency

of the two striatal VOIs was associated with either cognitive scores or
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FIGURE 2

Schematic of the dynamic functional connectivity analysis pipeline: The green boxes represent the general steps to retrieve

independent network components (INCs) from both cohorts. Afterward, a back reconstruction step resulted in subject-specific spatial maps and
time courses for each INC. Via the sliding window approach utilizing tapered windows of 44 s length, correlation matrices were obtained for each
patient across the entire scan for each cohort. With the k-means clustering algorithm, the correlation matrices of the entire cohort were clustered

according to similarity.

motor function in the PD groups. The correlation analysis yielded a
significant negative correlation between the mean putamen values
and UPDRS-IIl OFF scores in the KFO cohort (7, (N = 41) = —.226,
p = .043) and the PPMI cohort (7, (N = 63) = —.180, p = .040). Both
results did not withstand correction for multiple comparisons (k = 2:
adj. p = .025). In both cohorts, we did not find an association between
cognitive scores of the MMSE and mean dopamine scores in the puta-

men or the caudate.

Dopamine with dFC

As the average dwell time, the number of bidirectional transitions, and
the number of total transitions correlated with UPDRS-III off scores in
the PPMI cohort, we tested the association between striatal dopamine
availability and the three dFC properties across the PD group in both
cohorts. Inside the KFO PD group, no such associations between dFC
variables and dopamine synthesis capacity could be reported. Inside
the PPMI cohort, average time spent in the Gl state correlated with
the mean DaT availability in the putamen (z,(N = 63) = .22, p = .012)
and the caudate (rp(N = 63) = .216, p = .014). The number of total

transitions was also associated with mean DAT availability in the

putamen (rp(N = 63) = .341, p <.001) and the caudate (z,(N = 63)
= .24, p = .006). In terms of bidirectional transitions we observed an
association of the number of transitions between the Gl and MC state
with mean DAT availability in the caudate (zp(N = 63) = .225,
p = .010) and the LC and MC with the DAT availability in the putamen
(tp(N = 63) = .225, p = .021). We further found an association of
bidirectional transitions between the Gl and MC (7,(N = 63) = .183,
p = .038) state and Gl the LC (,(N = 63) = .182, p = .038) with the
mean DAT availability in the putamen. These associations, however,
did not survive correction for multiple comparisons (k= 2:
adj. p = .025).

4 | DISCUSSION

The primary aim of this study was to elucidate dopamine's association
with whole-brain network dynamics in PD. This study used two
matched cohorts to assess the reproducibility of the dFC results. Ulti-
mately, we found PD-specific network dynamics in the PPMI cohort:

A decrease in the number of transitions and a lower overall presence
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FIGURE 3

Dynamic functional connectivity (FC) states along the whole sample (k = 3) for each cohort. Each cluster is summarized in one FC

map portraying FC within and between resting-state networks (RSNs) (portioned by thick blue lines) in pairwise correlations. The correlations
were Fisher z transformed and averaged across all subjects, then inverse z-transformed for display. The total percentage of windows assigned to
the state is shown. The value of correlations is represented in the color bar; the red color represents positive and blue negative correlations. The
diagonal represents the correlations of the subnetwork by itself and is thereby one.

of the Gl state. Since these specific features of dFC were negatively
associated with UPDRS-III scores (one also in KFO), we suspect a high
transition frequency toward a Gl state and an increased presence of a
Gl state to facilitate motor performance. As these have further been
shown to be associated with striatal dopamine availability, dopamine
appears to play an essential role in mediating those large-scale net-
work dynamics in early PD patients. Notably, our results were not sta-
ble across cohorts, suggesting that the dFC alterations depended on
cohort composition.

Employing dFC on two cohorts, we identified three connectivity
states in both cohorts that followed the same pattern. In both cohorts,
there were two states of high total occurrence, showing the highest
similarity regarding connectivity patterns of all three states: One was
highly connected, while the other was less connected. The last state,
less frequent in both cohorts, was characterized by a more global,
integrated connectivity pattern. Hence, using two independent

k-means clustering approaches, we disentangled two similar

connectivity cluster profiles for both cohorts, enabling us to compare
inside group differences between cohorts. In the PPMI cohort, we
found the overall expression of these states and the dynamic transi-
tion between states to be group-dependent. For the KFO cohort,
however, we did not observe any differences between groups. Hence,
if not explicitly stated, all the findings discussed below were found
only inside the PPMI cohort.

First, PD individuals of the PPMI

decreased transitions between states. Indeed, most of the previous

cohort showed overall

studies in whole-brain dFC in PD reported differences in the total
number of transitions (Cordes et al., 2018; Diez-Cirarda et al., 2018;
Fiorenzato et al., 2019). However, their results are conflicting. While
one study reported a higher number of transitions in PD (Diez-Cirarda
et al, 2018), two other studies showed a lower transitioning fre-
quency in PD patients compared to controls (Cordes et al., 2018;
Fiorenzato et al., 2019). Interestingly, in two of these studies, this

trend solely depended on cognitive status (Diez-Cirarda et al., 2018;
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Fiorenzato et al, 2019). Although our findings suggest that PD
patients exhibit limited dynamics in dwelling behavior, these results
were not associated with deteriorating cognitive abilities, as reported

by Fiorenzato et al. (2019), or overall decreased cognitive flexibility, as

suggested by Nomi et al. (2017). Against this body of studies, we
found features of dFC in the PPMI and the KFO cohort to be associ-
ated with motor performance: In PPMI, PD patients who, in total,

transitioned less between states showed higher motor impairments
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according to the UPDRS-III. This result contradicts previous observa-
tions linking better motor performance with reduced transition behav-
jor (J. Kim et al., 2017).

Moreover, we observed the same relationship when comparing
the specific transitioning patterns between groups. PD patients who
specifically transitioned more often between the Gl and the LC state
showed better motor performance in both cohorts. In contrast, most
of the studies mentioned above identified only two states in their
study or did not investigate differences in transitioning patterns if
more states were present. Hence, across two separate cohorts, we
are the first to report associations of specific transitioning patterns
with motor performance in PD. These associations suggest that over-
all high network dynamics and dynamics between particular connec-
tivity configurations are relevant in motor control. Thus, in PD, the
underlying mechanisms facilitating these dynamic transitions between
states of global integration and segregation seem to be impaired.
Intriguingly, our results in PPMI further imply that this ability to gener-
ally transition between states and to specifically transition between
globally segregated and integrated states depends on the integrity of
the striatal dopaminergic system. This notion is based on two findings.
First, we observed, trend significant, the well-known relationship
between the decline in DaT signal and the increase in the UPDRS-III
motor score (Benamer et al., 2000; Pirker, 2003; Seibyl et al., 1995)
inside the PPMI PD group and the KFO cohort. Second, in PPMI PD
patients, the ability to dynamically transition between all states, and
the ability to transition specifically between the Gl and LC state, were
associated with caudal and putaminal DaT availability.

Further, fewer PD patients of the PPMI group visited the globally
integrated state at least once during an 8-min acquisition compared to
controls. Hence, many PD individuals missed spending time in a state
characterized by high interconnectivity between networks. Together
with our previous results indicating that dynamic transitions between
states of global integration and segregation are impaired in PD, these
results extend the notion that PD patients may have problems transi-
tioning specifically into a state of global integration. Interestingly,
another study longitudinally investigating dFC changes in PPMI data
revealed a decrease in dwell time in a state similar to the Gl state and
an increase in dwell time for a state corresponding to the LC state
(Cao et al., 2023). Their results suggest that hypocoupling worsens in
the course of PD (Cao et al, 2023). We did not find a decrease
in average dwell time in the Gl state for PD. Yet, our other findings in
the same cohort suggest this worsening of hypocoupling to be caused
by an inability to transition into a state with high interconnectivity.
Central to this, in our study, the average time spent in the Gl state in
the PPMI cohort and the number of bidirectional transitions between
the Gl and the LC state in both cohorts were positively associated
with motor performance. This suggests the increased presence of
hypocoupling and decreased dynamics between integrated and segre-
gated connectivity configurations to be related to poor motor output.
Similar associations were reported in whole-brain dFC before; how-
ever, again, the opposite effect was reported (Kim et al., 2017).

Nevertheless, another recent study showed levodopa intake to

increase the dwell time in a state with the strongest functional
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coupling between the fronto-parietal network (FPN) and the SMN
(Chen et al, 2021). OFF medication, this mean dwell time was
reduced again in the same PD patients (Chen et al., 2021). Notably,
this dopamine-associated change in mean dwell time was negatively
associated with UPDRS-IIl scores, highlighting that altered dFC fea-
tures are associated with motor performance and, particularly related
to dopamine. In our PPMI cohort, we could reproduce these findings
with a direct measure of dopaminergic impairment, as the mean dwell
time in the globally integrated state was positively associated with the
mean DaT signal in the putamen and the caudate. While Chen and
colleagues' study was focused on dynamics between the SMN and
networks involved in top-down motor control, our study assessed
network dynamics on a whole-brain level. Hence, our results obtained
in the PPMI cohort extend their view of SMN and FPN stability to be
dopamine-dependent, pointing to the fact that global integration of
the SMN with other non-motor associated networks is dopamine
dependent and relevant to sustaining proper motor output.

According to our results in both cohorts, we suspect that in early
PD patients, network changes are affiliated with motor function. In
particular, the overall presence of globally interconnected states and
high dynamics toward a state of high interconnectivity seem to facili-
tate motor performance. As in PPMI, these have further been shown
to be related to striatal dopamine availability, dopamine appears to
play an essential role in mediating those large-scale network dynamics
in early PD patients. With these findings, we provide a novel mecha-
nism for how dopamine might modulate motor control in PD and
highlight the potential of investigating large-scale network dynamics
in a disease context. In particular, investigating bidirectional transi-
tions between connectivity states, which have never been assessed in
PD, provided novel insights into how dopamine might contribute to
motor functions.

Importantly, although the state profiles of both cohorts were very
well matched, we did not observe any group differences in the KFO
cohort. In this section, we will discuss potential reasons for that. First,
we will assess how demographical differences and cohort composition
might have fueled differences in dFC results across cohorts. Second,
we will investigate whether the methodological approach itself might
be the underlying cause of the varying results in both cohorts.

Comparing the demographics of both PD groups revealed two
things: First, the PD individuals of the KFO cohort were more
advanced in the progression of the disease than the ones of the PPMI
cohort. Accordingly, KFO PD patients presented a longer disease
duration and a higher LEDD. In the course of the disease, the brain
undergoes a functional reorganization of the RSNs, which may even
occur before the onset of clinical symptoms (Tessitore et al., 2019).
Accordingly, also PD-specific dFC alterations were shown to increase
over time (Cao et al., 2023). Since the PD individuals of the KFO
cohort showed a more advanced disease progression, we would
expect these changes to be more profoundly expressed in the dFC
metrics of the KFO PD group cohort compared to the PPMI PD
group. However, contrary to our expectations, the KFO cohort did
not show any group differences in dFC metrics to the healthy control

group.

ASUADIT SUOWILOD) dANEAL)) d[qeat[dde a) Aq pauIdA0S a1e S[oNIE Y (asn Jo SI[NI 10§ AIRIqET dUIUQ A3[IA\ UO (SUONIPUOI-PUE-SULIA) W00 K[ 1A AIRIQI[AUI[UO//:sd)Y]) SUONIPUOD) PUB SWLIDT 3y 298 *[§70Z/10/€ 1] U0 AIRIqIT SuIUQ AJ[IAN “IOIUR)) YOIBISY HQWID YOI[N[ WnnuazsSunyasiof Aq 9//97 WqU/z001 01 /10p/wod" Kajm Areiqiiaurjuo//:sdny woly papeopumod ‘01 ‘¢20z ‘€610L601



ASENDOREF ET AL.

“et18| WILEY

Second, KFO PD individuals showed lower levels of education
and lower scores in cognitive tests despite inherently difficult compar-
isons between countries. In healthy subjects, cognitive performance
(Cabral et al., 2017) and flexibility (Nomi et al., 2017) have been asso-
ciated with the ability to switch dynamically between states. Further,
also PD-specific alterations of dFC have been associated with
increased cognitive impairment (Boon et al, 2020; Diez-Cirarda
et al., 2018; Fiorenzato et al., 2019). Hence, contrary to the obtained
results, we would expect the KFO cohort to be even more likely to
show between-group differences than PPMI. This expectation is fur-
ther supported by findings involving education, cognition, and FC in
healthy aging. Age- and education-related changes in FC were associ-
ated with memory performance (Montemurro et al., 2023). Moreover,
a cohort of healthy controls and multiple sclerosis with longer educa-
tion showed higher dynamics and better cognitive performances (Lin
et al., 2018).

In summary, we could not identify any demographical feature
that, in accordance with the current literature, explains why we
obtained such imbalanced results between both cohorts. However,
we assume that other unrecognized and untracked demographical dif-
ferences might drive dFC results. Assessing the cohort composition in
more detail may lead to a clearer verdict as to why the group differ-
ences obtained in the PPMI cohort were not observed in the KFO
cohort. Unfortunately, no more detailed and comparable cohort fea-
tures were available.

Next, we will address how the methodological approach might
have impacted the results. One could argue that due to the uncon-
strained nature of resting-state experiments, the concept of rsfMRI
itself may appear challenging when reproducing results in two
cohorts. Nonetheless, static RSNs were proven to have high levels of
reproducibility across imaging sessions (Biswal et al., 2010; Shehzad
et al., 2009) and different subjects (Damoiseaux et al., 2006; Shehzad-
et al.,, 2009). Through our data-driven approach that included both
cohorts simultaneously, we established RSNs that were similarly
expressed across all individuals of both cohorts. This enabled us to
compare differences between groups inside the cohort and the
obtained results across cohorts. By choosing comparatively similar
sample sizes for controls and PD patients in both cohorts, we ensured
that individuals of one particular cohort did not dominate the RSN
composition. However, the clinical presentation of PD is heteroge-
neous. Previous reports indicate a difference in DMN and striatal con-
nectivity in PD patients with tremor-predominant and primarily
akinetic rigid symptoms (Karunanayaka et al., 2016; Zhang
et al., 2015). Based on this, although PD groups were matched across
cohorts, RSN connectivity might have varied in both PD groups due
to different subtype ratios.

Furthermore, inside the cohorts, group sizes deviated highly
from each other. Controls comprised 25.4% of the PPMI and
32.7% of the KFO cohort. Hence, overall RSN architecture could
have been driven by PD RSN composition. Despite that argument,
during our definition of meaningful components, the RSNs identi-
fied by the ICA considerably overlapped with RSNs previously
established in groups of younger healthy controls (Shirer

et al., 2012). Refining RSNs for each group in each cohort sepa-
rately would resolve these two issues. However, they would criti-
cally dampen the between-group and especially the between-
cohort comparability of our dFC results.

Likewise, the dFC approach might be susceptible to technical
differences in data acquisition. Hence, although the same analysis
pipelines were used, alterations in data acquisition may interfere
differently with dFC results. The most notable alteration in data
acquisition is the inter-scanner variability. In contrast to the KFO
study, where all subjects were scanned on the same scanner, PPMI,
as a multicenter study, includes individuals who were scanned on
various scanners and scanner types. Importantly, to test the influ-
ence of inter-scanner variability on our results we additionally cor-
rected our results in PPMI for scanner identifiers. The obtained
results did not differ from our original results. Hence, we are confi-
dent that the variations among scanners in the PPMI dataset have
a negligible effect on our findings. Further, it has been suggested
that the duration of a dFC-appropriate resting-state acquisition
should be at least 10 min (Hindriks et al., 2016). Hence, the
extended acquisition time in the PPMI resting-state protocol of
8.5 min might have been better suited to a dFC approach than the
KFO's 8-min acquisitions. Moreover, the cohort's acquisition para-
digms varied drastically in TR. Hence, the analysis was carried out
for the KFO cohort separately, once with a TR adjusted to the
PPMI dataset and once with an unadjusted TR. Although these two
approaches equally did not produce any sign group differences
regarding dFC variables for the KFO cohort, we cannot rule out
that the different TRs might affect dFC results. Nevertheless, as
changing the KFO's TR by downsampling would entail a significant
manipulation of the input data, we kept the data as they were.
Interestingly, a preceding study provided evidence of the repro-
ducibility of basic connectivity patterns amidst inter-regional con-
nections over 7500 scans composing “probably” mixed
independent resting-state datasets of healthy and diseased indi-
viduals (Abrol et al., 2017). However, all these scans followed the
same acquisition protocol, and only eight of these scans deviated
in TR from the other scans. Vital to mention at this point is a
recent study investigating the relationship of dFC alterations with
non-motor symptoms of PD in a PPMI cohort. This study used the
same analysis pipeline with slightly altered settings (50s windows,
Yeo atlas). Intriguingly, this study found astonishingly similar state
patterns to those we achieved for the PPMI cohort in our approach
(Cao et al., 2023). This demonstrates the reproducibility of state
patterns across different analysis parameters and cohort composi-
tion in one of our cohorts. Further, this high similarity in sorted
state patterns signifies that joining both cohorts in one ICA did not
alter the state pattern composition of our PPMI cohort.

Considering all this, we can summarize that we identified differ-
ences in cohort composition and acquisition parameters that could
have caused variation in the between-group differences observed in
both cohorts. Yet, we did not identify one specific feature in method-
ology or cohort composition that we consider highly influential. We

suspect these differences in the results to be driven by differences in
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cohort composition that were not assessed within the framework of
this study, like disease subtype ratio or lifestyle factors. This again
underlines the need for deep phenotyping in neuroimaging datasets,
as a more detailed description of the cohorts and more significant
group sizes would have been highly relevant to performing an effec-
tive group matching.

5 | CONCLUSION

Our findings in the PPMI cohort illustrate that PD patients exhibit
altered network dynamics compared to healthy controls. These
alterations are defined by a lower prevalence for integrated connec-
tivity states and decreased transition frequency between a globally
integrated and a LC state. With these findings, we supply a potential
mechanism for how dopaminergic neurodegeneration drives global
changes in connectivity underlying motor dysfunction in
PD. However, most of these results were obtained for only one of
two cohorts. Therefore, it will be valuable to reassess these findings
and their replicability in two bigger, effectively matched cohorts.
Furthermore, it will be interesting to investigate whether the
reported impairment of network dynamics is already observable in
prodromal stages of PD, such as in patients with REM-sleep behav-
ioral disorder.
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