001     1037252
005     20250804115228.0
024 7 _ |a 10.1002/elsa.202400038
|2 doi
024 7 _ |a 10.34734/FZJ-2025-00585
|2 datacite_doi
024 7 _ |a WOS:001390520700001
|2 WOS
037 _ _ |a FZJ-2025-00585
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Wolf, Niklas
|0 P:(DE-Juel1)190997
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Tuning Proton Exchange Membrane Electrolytic Cell Performance by Conditioning Nafion N115‐Based Membrane Electrode Assemblies
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH Verlag GmbH & Co KGaA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750833049_1868
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Conditioning of the membrane electrode assembly (MEA) is an important step to establish functionality and obtain a consistent performance of the proton exchange membrane electrolytic cell (PEMEC) when setting it into operation. On a laboratory scale in an academic context, conditioning encompasses primary pre-treatment of the MEA by chemical or thermal procedures under defined mechanical conditions and, secondarily, the break-in procedure, during which the PEMEC is subjected to initial electrical loads before actual operation. This study demonstrates the effect of MEA conditioning on the short-term performance of PEMEC. The impact of mechanical, chemical and thermal conditions during pre-treatment was investigated for Nafion N115-based MEAs while keeping the break-in procedure invariant for all pre-treatment conditions. The electrochemical characterisation was performed using polarisation curves and electrochemical impedance spectroscopy. The impact of ex situ–before assembly of the cell–versus in situ–after assembly of the cell–conditioning resulted in markedly different mechanical conditions. The experimental results showed an improvement in PEMEC performance by pre-treating the MEA after cell assembly. Compared to pre-treatment with deionised water (DI water) at 60°C, treatment with acidic solution improved the performance, evidenced by a 21 mV reduction in cell voltage at 2 A·cm−2. When compared with DI water at 60°C, a pre-treatment at 90°C with DI water reduced cell voltage by 23 mV.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Javed, Ali
|0 P:(DE-Juel1)196699
|b 1
700 1 _ |a Treutlein, Leander
|0 P:(DE-Juel1)190785
|b 2
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 3
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 4
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 5
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
|u fzj
770 _ _ |a Towards Water Electrolysis at Scale: De-Risking of AEM&PEM-Electrolysis
773 _ _ |a 10.1002/elsa.202400038
|g p. e202400038
|0 PERI:(DE-600)2984616-X
|n 3
|p e202400038
|t Electrochemical science advances
|v 5
|y 2025
|x 2698-5977
856 4 _ |u https://juser.fz-juelich.de/record/1037252/files/Electrochemical%20Science%20Adv%20-%202025%20-%20Wolf%20-%20Tuning%20Proton%20Exchange%20Membrane%20Electrolytic%20Cell%20Performance%20by%20Conditioning.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037252
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190997
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)196699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190785
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:09:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:09:35Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21