001037258 001__ 1037258
001037258 005__ 20250203124505.0
001037258 0247_ $$2doi$$a10.1039/D4CP03592E
001037258 0247_ $$2ISSN$$a1463-9076
001037258 0247_ $$2ISSN$$a1463-9084
001037258 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00591
001037258 0247_ $$2pmid$$a39807029
001037258 0247_ $$2WOS$$aWOS:001395874600001
001037258 037__ $$aFZJ-2025-00591
001037258 082__ $$a540
001037258 1001_ $$0P:(DE-Juel1)186098$$aSpeer, Sebastian$$b0
001037258 245__ $$aLaser induced oxidation Raman spectroscopy as an analysis tool for iridium-based oxygen evolution catalysts
001037258 260__ $$aCambridge$$bRSC Publ.$$c2025
001037258 3367_ $$2DRIVER$$aarticle
001037258 3367_ $$2DataCite$$aOutput Types/Journal article
001037258 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736866164_6295
001037258 3367_ $$2BibTeX$$aARTICLE
001037258 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037258 3367_ $$00$$2EndNote$$aJournal Article
001037258 520__ $$aThe study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state. This work demonstrates the high oxidation sensitivity of iridium and its utilization in analysis of catalyst materials. Laser induced oxidation Raman spectroscopy (LIORS) is established as a novel method for qualitative, chemical and structural analysis of iridium catalysts. Differences in particle sizes of iridium powders drastically change oxidation sensitivity. Oxidation of the iridium powders to IrO2 occurred at a laser power density of 0.47 ± 0.06 mW μm−2 for the 850 μm powder and at 0.12 ± 0.06 mW μm−2 and 0.019 ± 0.015 mW μm−2 for the 50 μm and 0.7–0.9 μm powders respectively. LIORS was utilized to assess possible deterioration of an iridium electrocatalyst due to operation under electrolysis. The operating electrocatalyst exhibited higher oxidation sensitivity, suggesting smaller iridium particle size due to catalyst dissolution. Peak shifts of the IrO2 signal were utilized to assess differences in transformation temperatures. The operated electrocatalyst transformed to IrO2 at lower temperature (8 cm−1 redshift) relative to the pristine catalyst (10 cm−1 redshift), demonstrating that pre-oxidation of the iridium to amorphous IrOx during electrolysis diminishes the energy barrier needed for IrO2 formation. Thus, LIORS can be utilized as a straightforward screening method for the analysis of iridium electrocatalysts in the industrial application of PEMEL.
001037258 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001037258 536__ $$0G:(DE-Juel1)BMBF-03HY121B$$aSEGIWA - Verbundvorhabenn H2Giga_TP1a_SEGIWA: Online Analytik für die Serienproduktion von Elektrolyseuren im Gigawatt-Bereich (BMBF-03HY121B)$$cBMBF-03HY121B$$x1
001037258 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037258 7001_ $$0P:(DE-Juel1)169518$$aJovanovic, Sven$$b1$$eCorresponding author
001037258 7001_ $$00000-0002-8453-299X$$aMerlen, Alexandre$$b2
001037258 7001_ $$0P:(DE-Juel1)201601$$aBartoli, Francesco$$b3$$ufzj
001037258 7001_ $$0P:(DE-Juel1)198711$$aKiran, Kiran$$b4
001037258 7001_ $$0P:(DE-Juel1)190997$$aWolf, Niklas$$b5$$ufzj
001037258 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b6
001037258 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b7
001037258 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8$$ufzj
001037258 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D4CP03592E$$gp. 10.1039.D4CP03592E$$p0$$tPhysical chemistry, chemical physics$$v0$$x1463-9076$$y2025
001037258 8564_ $$uhttps://doi.org/10.1039/D4CP03592E
001037258 8564_ $$uhttps://juser.fz-juelich.de/record/1037258/files/d4cp03592e.pdf$$yOpenAccess
001037258 8767_ $$d2025-01-31$$eHybrid-OA$$jPublish and Read
001037258 909CO $$ooai:juser.fz-juelich.de:1037258$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001037258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186098$$aForschungszentrum Jülich$$b0$$kFZJ
001037258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169518$$aForschungszentrum Jülich$$b1$$kFZJ
001037258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201601$$aForschungszentrum Jülich$$b3$$kFZJ
001037258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198711$$aForschungszentrum Jülich$$b4$$kFZJ
001037258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190997$$aForschungszentrum Jülich$$b5$$kFZJ
001037258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b6$$kFZJ
001037258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b7$$kFZJ
001037258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
001037258 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
001037258 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001037258 9141_ $$y2025
001037258 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001037258 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001037258 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001037258 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001037258 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001037258 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001037258 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001037258 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037258 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001037258 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001037258 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001037258 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001037258 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001037258 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001037258 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001037258 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001037258 920__ $$lyes
001037258 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001037258 9801_ $$aFullTexts
001037258 980__ $$ajournal
001037258 980__ $$aVDB
001037258 980__ $$aUNRESTRICTED
001037258 980__ $$aI:(DE-Juel1)IET-1-20110218
001037258 980__ $$aAPC