001037282 001__ 1037282
001037282 005__ 20250203103212.0
001037282 037__ $$aFZJ-2025-00610
001037282 1001_ $$0P:(DE-Juel1)190876$$aSchulz, Sebastian$$b0$$eCorresponding author$$ufzj
001037282 1112_ $$aISC High Performance 2024$$cHamburg$$d2024-05-12 - 2024-05-16$$gISC24$$wGermany
001037282 245__ $$aGuided Quantum Walk
001037282 260__ $$c2024
001037282 3367_ $$033$$2EndNote$$aConference Paper
001037282 3367_ $$2BibTeX$$aINPROCEEDINGS
001037282 3367_ $$2DRIVER$$aconferenceObject
001037282 3367_ $$2ORCID$$aCONFERENCE_POSTER
001037282 3367_ $$2DataCite$$aOutput Types/Conference Poster
001037282 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1736926933_16035$$xAfter Call
001037282 520__ $$aQuantum algorithms, such as quantum walks (QWs) and quantum annealing (QA), have generated significant attention for their potential to solve large-scale combinatorial optimization problems. In this research, we utilize the theory of local amplitude transfer (LAT) to delve into the operational principles of these algorithms beyond the adiabatic theorem, providing insights into the design of optimal quantum evolutions. By representing the eigenspace of the problem Hamiltonian as a hypercube graph, we demonstrate that probability amplitude traverses the search space through a series of local Rabi oscillations. We argue that the amplitude movement can be systematically guided towards the ground state using a time-dependent hopping rate based solely on the problem’s energy spectrum. Building upon these insights, we extend the concept of multistage QW by introducing the guided quantum walk (GQW) as a bridge between QW-like and QA-like procedures. We assess the performance of the GQW on exact cover and garden optimization problems with 12 to 40 qubits. Our results provide evidence for the existence of optimal annealing schedules, beyond the requirement of adiabatic time evolutions. These schedules might be capable of solving large-scale combinatorial optimization problems within evolution times that scale linearly in the problem size.
001037282 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037282 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b1$$ufzj
001037282 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$ufzj
001037282 8564_ $$uhttps://app.swapcard.com/widget/event/isc-high-performance-2024/planning/UGxhbm5pbmdfMTgzOTk3Nw==
001037282 909CO $$ooai:juser.fz-juelich.de:1037282$$pVDB
001037282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190876$$aForschungszentrum Jülich$$b0$$kFZJ
001037282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b1$$kFZJ
001037282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
001037282 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037282 9141_ $$y2024
001037282 920__ $$lyes
001037282 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037282 980__ $$aposter
001037282 980__ $$aVDB
001037282 980__ $$aI:(DE-Juel1)JSC-20090406
001037282 980__ $$aUNRESTRICTED