001037283 001__ 1037283
001037283 005__ 20250203103212.0
001037283 037__ $$aFZJ-2025-00611
001037283 1001_ $$0P:(DE-Juel1)195826$$aSensebat, Orkun$$b0$$eCorresponding author$$ufzj
001037283 1112_ $$aISC High Performance 2024$$cHamburg$$d2024-05-12 - 2024-05-16$$gISC24$$wGermany
001037283 245__ $$aQuantum Annealers and Partial Differential Equations: The Gate-Based Encoding Approach
001037283 260__ $$c2024
001037283 3367_ $$033$$2EndNote$$aConference Paper
001037283 3367_ $$2BibTeX$$aINPROCEEDINGS
001037283 3367_ $$2DRIVER$$aconferenceObject
001037283 3367_ $$2ORCID$$aCONFERENCE_POSTER
001037283 3367_ $$2DataCite$$aOutput Types/Conference Poster
001037283 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1736926949_26707$$xAfter Call
001037283 520__ $$aRepresenting Partial Differential Equations (PDEs) on Quantum Annealers (QAs) is not obvious. The first step of solving a PDE on a QA is to discretize it. We used finite differences. Next, a Quadratic Unconstrained Binary Optimization (QUBO) model is obtained that is equivalent to an Ising model. Finally, the QUBO coefficients are computed using an encoding in terms of the qubits to represent the variables. The conventional choice for this encoding is a binary encoding. A challenge is that the accessible size of systems is constrained due to the limited number of qubits. In other words, it becomes impossible to achieve a non-zero convergence probability. We addressed this challenge by developing a novel encoding, the gate-based encoding (GBE), to replace the conventionally used binary encoding. This aims to overcome the problem of exponentially scaling coefficients of binary encoding. GBE utilizes the structure of the discretized operators to construct a circuit that results in QUBO weights of comparative magnitude for each bit in the final bit-string, thus overcoming the exponentially rising weight given to the leading digits in the conventionally used binary encoding. GBE allows to successfully solve problems with larger encoding lenths for all problem sizes and solvers, e.g., 21 vs. 17 for the hybrid solver with our test setup. This is also emphasized by the significantly higher success probability for all encoding lengths compared to binary encoding. The cost of GBE is the higher number of variables
001037283 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037283 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b1$$ufzj
001037283 7001_ $$0P:(DE-Juel1)192255$$aBode, Mathis$$b2$$ufzj
001037283 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj
001037283 8564_ $$uhttps://app.swapcard.com/widget/event/isc-high-performance-2024/planning/UGxhbm5pbmdfMTgzOTk4OQ==
001037283 909CO $$ooai:juser.fz-juelich.de:1037283$$pVDB
001037283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195826$$aForschungszentrum Jülich$$b0$$kFZJ
001037283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b1$$kFZJ
001037283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192255$$aForschungszentrum Jülich$$b2$$kFZJ
001037283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
001037283 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037283 9141_ $$y2024
001037283 920__ $$lyes
001037283 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037283 980__ $$aposter
001037283 980__ $$aVDB
001037283 980__ $$aI:(DE-Juel1)JSC-20090406
001037283 980__ $$aUNRESTRICTED