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Abstract  Brain magnetic resonance imaging fre-
quently reveals white matter lesions (WMLs) in 
older adults. They are often associated with cognitive 
impairment and risk of dementia. Given the continu-
ous search for the optimal segmentation algorithm, 
we broke down this question by exploring whether the 
output of algorithms frequently used might be biased 
by the presence of different influencing factors. We 
studied the impact of age, sex, blood glucose levels, 
diabetes, systolic blood pressure and hypertension on 
automatic WML segmentation algorithms. We evalu-
ated three widely used algorithms (BIANCA, LPA 
and LGA) using the population-based 1000BRAINS 
cohort (N = 1166, aged 18–87, 523 females, 643 

males). We analysed two main aspects. Firstly, we 
examined whether training data (TD) characteristics 
influenced WML estimations, assessing the impact 
of relevant factors in the TD. Secondly, algorithm’s 
output and performance within selected subgroups 
defined by these factors were assessed. Results 
revealed that BIANCA’s WML estimations are influ-
enced by the characteristics present in the TD. LPA 
and LGA consistently provided lower WML estima-
tions compared to BIANCA’s output when tested on 
participants under 67 years of age without risk car-
diovascular factors. Notably, LPA and LGA showed 
reduced accuracy for these participants. However, 
LPA and LGA showed better performance for older 
participants presenting cardiovascular risk factors. 
Results suggest that incorporating comprehensive 
cohort factors like diverse age, sex and participants 
with and without hypertension in the TD could 
enhance WML-based analyses and mitigate potential 
sources of bias. LPA and LGA are a fast and valid 
option for older participants with cardiovascular risk 
factors.

Keywords  White matter lesion · BIANCA · LPA · 
LGA · Training data characteristics

Introduction

White matter lesions (WMLs) of presumed vascular 
origin, also known as white matter hyperintensities 
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(WMHs) due to their hyperintense appearance on 
T2-weighted, fluid attenuated inversion recovery 
(FLAIR) and proton density-weighted images, are 
common findings on brain magnetic resonance imag-
ing (MRI) scans of older adults [1]. They are an 
expression of small vessel disease (SVD) [2]. Their 
prevalence increases with age [3, 4] and they are 
associated with cognitive impairment [5] and risk of 
dementia [6].

The assessment of WML for a clinical diagnosis, 
such as mild cognitive impairment or dementia [7], 
is typically performed by visual inspections of the 
MR scans using rating scales (e.g.: [8–11]). How-
ever, this method requires trained personnel, it is 
time-consuming, it has high intra- and inter-operator 
variability, and it provides semi-quantitative infor-
mation [12–14]. Volumetric measurements of WML 
offer an improved alternative [14, 15]. While manual 
segmentation of WML is feasible for small studies, 
automated segmentation algorithms are necessary for 
large cohort datasets, such as the UK Biobank [16] or 
the German National Cohort (NAKO) [17]. In recent 
years, numerous algorithms have been developed for 
automatic WML segmentation [18]. An example is 
the well-established and widely used Brain Intensity 
AbNormality Classification Algorithm (BIANCA), a 
fully automated, supervised machine learning method 
based on the k-nearest neighbour (k-NN) algorithm, 
which mandates training datasets [19]. BIANCA 
allows to be trained by customised training datasets 
to then be applied to unseen brain images. Together 
with the training dataset, an initial set of parameters 
is needed. These parameters determine in which way 
the spatial and intensity information derived from 
the training data are utilised, as well as the number 
of training data points employed. Another example is 
the lesion growth algorithm (LGA), originally devel-
oped for segmenting lesions in multiple sclerosis 
(MS) patients. This is an unsupervised algorithm that 
has also been applied to segment the WML of cog-
nitively unimpaired elderly individuals [20] and indi-
viduals with other conditions such as diabetes melli-
tus [21]. LGA employs T1 and FLAIR data to create 
a lesion belief map. After an initial user-determined 
parameter, the initial threshold kappa, is applied to 
the lesion belief maps, intensity outliers are identi-
fied. These outliers will then be expanded by analys-
ing the intensity of neighbouring voxels. This is done 
by applying an iterated growth algorithm that uses 

maximum likelihood estimators to create a probabil-
ity lesion map [22]. The algorithm stops when the 
estimator reaches a predefined limit. Therefore, LGA 
does not mandate training data, but it needs an ini-
tial user-selected parameter [22]. Another common 
algorithm used in the study of WML is the lesion 
prediction algorithm (LPA), a binary classifier using 
logistic regression, trained on data of 53 MS patients 
with severe lesion patterns [23]. LPA does not need 
initial parameters to be set nor training data, as the 
algorithm is already trained on a specific MS train-
ing dataset. Over the past years, many studies have 
focused on identifying the best automatic segmen-
tation methodology, i.e., the one with the highest 
performance, whether supervised, unsupervised, 
automatic or semi-automated [18, 19, 22, 24–26]. 
Despite efforts to optimize these methods, an out-
standing automatic method has not been identified yet 
[18, 27]. Although most of the algorithms have been 
tested individually [18], a comprehensive comparison 
across various WML segmentation algorithms is still 
needed to identify which ones accurately delineate 
WML patterns.

The occurrence of WML, however, has been 
shown to be significantly influenced by high blood 
pressure levels, hypertension, obesity, blood glucose 
levels, diabetes, age, sex, smoking and low physical 
activity [28–31]. Participants with levels of these fac-
tors associated with a less health conscious lifestyle 
tend to present a higher total WML volume. Auto-
matic segmentation methods like BIANCA have been 
tested using random training datasets, e.g. [32] or 
datasets focused on the WML load, comprising par-
ticipants with low, medium and high amount of WML 
[27, 33]. Yet, the information contained in training 
datasets might be highly related to the information 
that can be identified and ‘learned’ by the algorithm. 
If the training data is very specific, it might limit the 
algorithm’s knowledge and generalizability to other 
datasets, potentially introducing bias on the WML 
volume estimations. For example, if the selection is 
too narrow, such as including only participants with 
high WML load, the algorithm may be biased towards 
accurately segmenting only high amounts of WML 
and perform poorly for participants with low amount 
of WML. The algorithm could also tend to overesti-
mate scans with a low WML amount. Similarly, if the 
training data consist solely of hypertensive partici-
pants, the algorithm performance may be low when 
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applied to healthy individuals. Hence, it might be 
expected that the output of the algorithm is influenced 
by the training data, while in turn it is still unclear 
how the algorithm reacts to data, which it has not 
seen. Since groups of people with different levels of 
the above-mentioned lifestyle and risk factors likely 
present different patterns of WML, the composition 
of the training data might be crucial for the algo-
rithms output. Thus, analysing differences in WML 
estimations using distinctly selected training datasets 
that represent various relevant factors influencing the 
WML load is relevant to evaluate the accuracy of the 
algorithms, yet it remains to be explored. Addition-
ally, automated methods that do not require training 
datasets, such as LGA and LPA, have undergone test-
ing and validation across various cohorts composed 
of cognitive impaired participants, individuals with 
dementia, and in healthy older adults (50–78  years) 
[20, 26, 27, 34, 35]. However, evaluating their perfor-
mance on different subsamples within a cohort, com-
posed of distinct relevant influencing factors, remains 
to be elucidated. This is crucial for determining 
whether the accuracy and performance of a particular 
algorithm remain consistent across the entire cohort 
or if it performs better only for participants present-
ing specific factors. Thus, determining which WML 
patterns—influenced by specific risk factors—can 
be reliably detected by which of the algorithms still 
needs to be elucidated.

Hence, the first aim of this study is to determine if 
the composition of the training data influences WML 
estimations. Specifically, we aim to discover if bias 
is introduced when the algorithm is trained on indi-
viduals with specific relevant factors. Since LGA and 
LPA do not require training, whereas BIANCA does, 
we will use BIANCA to address this question. We 
will test BIANCA when trained on different datasets, 
each one with a specific focus on a relevant influenc-
ing factor for WML load. Therefore, we will train 
BIANCA multiple times, each time on a group of 
individuals with a specific selection of relevant char-
acteristics, i.e. age, sex, blood glucose levels, diabe-
tes, blood pressure levels and hypertension. Here, we 
will also identify which composition of training data 
yields the highest performance.

The second aim is to evaluate the output and per-
formance of three different algorithms, with respect 
to the presence of specific relevant characteristics in 
the test data; i.e. we aim to identify, if the different 

algorithms produce (in)accurate delineation when 
applied to specific subgroups of individuals. If so, 
we examine which characteristics in the test data 
are of concern for which of the algorithms. There-
fore, we will compare the output and performance 
of BIANCA, LPA and LGA against each other when 
applied to individuals exhibiting specific influencing 
factors, i.e. age, sex, blood glucose levels, diabetes, 
blood pressure levels and hypertension. For this aim, 
BIANCA will be used with the training setup that 
yielded the highest performance in the 1st aim.

Results show that the composition of training data-
sets influences BIANCA’s WML estimations, intro-
ducing bias when the training data is very specific; 
e.g. when only trained on younger participants, WML 
load will systematically be underestimated. BIAN-
CA’s highest performance was identified when the 
algorithm was trained on a group of individuals pre-
senting all different relevant influencing factors. LPA 
and LGA performed poorly when applied to partici-
pants younger than 67 years of age (mean DSI < 0.4) 
but their performance improved for older partici-
pants with cardiovascular risk factors. BIANCA out-
performed (mean DSI > 0.7) LPA and LGA when 
applied to different groups of individuals presenting 
all different cohort characteristics.

Materials and methods

For this study, we used three established and avail-
able segmentation algorithms, i.e. BIANCA, LPA and 
LGA, since they are freely available, are widely used 
in the community [19, 21, 27, 32, 34, 36–43] and use 
different methodological approaches for segmenting 
the WML.

Participants

The data used in this study is sourced from the 
population-based 1000BRAINS cohort [44], which 
focuses on investigating structural and functional 
variations in the normal aging brain. Participants 
were recruited from the Heinz-Nixdorf-Recall (HNR) 
study and the related HNR-Multi-Generation-study 
[45]. This dataset includes a wide range of epide-
miological information, such as neuropsychological 
tests, life quality, mood and daily activities, as well as 
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laboratory, genetic, clinical, socioeconomic and envi-
ronmental data.

Inclusion criteria for the present study required 
participants to be free from strokes and provide com-
plete data, including FLAIR and T1 images, along 
with age, sex, blood glucose levels, systolic and dias-
tolic blood pressure levels, diabetes diagnosis and 
hypertension diagnosis. Initially, there were 1314 
participants, but 55 were excluded due to incomplete 
laboratory information (see ‘Influencing factors’ 
section), 65 lacked the complete set of T1 + FLAIR 
modalities and 28 were excluded because of any type 
of tissue defects post stroke. In total, 1166 partici-
pants (mean age = 60, range 18–87, female (F):male 
(M) 523:643) from the first visit, as detailed in [44], 
were included in this study. Participants belonging 
to the same family were addressed in the statisti-
cal analysis described in a later section. All partici-
pants provided informed consent in accordance with 
the Declaration of Helsinki. The study protocol of 
1000BRAINS was approved by the ethics committee 
of the University of Duisburg-Essen.

MRI data

MRI brain scans were conducted using a 3-T MR 
scanner (Siemens Tim-TRIO; for the whole proto-
col, see Caspers et al. 2014). The sequences included 
in this study were as follows: a 3D T1-weighted 
MPRAGE (176 slices, TR = 2.25 s, TE = 3.03 ms, 
TI = 900 ms, FoV = 256 × 256 mm2, flip angle = 9°, 
voxel resolution = 1 × 1 × 1 mm3) and a clinical 
T2-weighted FLAIR (25 slices, TR = 9 s, TE = 100 
ms, FoV = 220 × 220 mm2, flip angle = 150°, voxel 
resolution = 0.9 × 0.9 × 4 mm3).

Relevant influencing factors

Given the associations between  WML and age, sex, 
high blood glucose levels, diabetes, high blood pres-
sure and hypertension demonstrated in previous stud-
ies [29, 31, 46–48], we included these influencing 
factors in the present  study. The following informa-
tion was considered for each participant: age, sex, 
systolic blood pressure (mmHg), diastolic blood pres-
sure (mmHg), whether participants had received a 
diagnosis of hypertension, the participants’ respective 
medication against hypertension (if applicable), and 
blood glucose levels (mg/dL) and whether subjects 

had a diagnosis of diabetes mellitus. A participant 
was considered to have diabetes if having a respective 
confirmed diagnosis. Subjects with confirmed diag-
nosis of hypertension or taking medication against 
hypertension were considered to have hypertension.

Evaluating the impact of relevant influencing factors 
on automatic WML estimations

Aim 1: influence of training data

To determine if the composition of the training data 
influences BIANCA’s WML estimations, we cre-
ated 15 training datasets, each showcasing a unique 
characteristic that could potentially influence BIAN-
CAs’ outcome. We then trained the algorithm  15 
times, each time for each training dataset, and com-
pared the resulting WML estimations of the whole 
1000BRAINS cohort. First, we selected a subsample 
characterised solely by participants’ age, ensuring 
that no other relevant factor was present. Specifically, 
we excluded participants with hypertension, systolic 
blood pressure exceeding 140  mmHg [49], diabe-
tes or a blood glucose level above 126  mg/dL [50]. 
We grouped these participants into six training data-
sets: age 18 (18–37  years), age 37 (37–47  years), 
age 47 (47–57  years), age 57 (57–67  year), age 67 
(67–77 years) and age 77 (77–87 years) (as shown in 
Table 1). We followed the same approach for studying 
the influence of all other relevant factors, i.e. select-
ing one factor of interest and keeping all other fac-
tors stable in the respective subsample. For exploring 
the influence of sex, we selected two subsamples of 
participants above 60 years old [51]: one without car-
diovascular factors (hypertensions and diabetes) and 
another one with these factors. We then grouped the 
participants according to their sex, resulting in four 
more training datasets: ‘males with no cardiovascular 
factors’ (male–no CF), i.e. males with no hyperten-
sion and/or diabetes, with blood glucose level below 
126  mg/dL, and with systolic blood pressure below 
140 mmHg, and ‘females without cardiovascular fac-
tors’ (female–no CF), i.e. we created two ‘healthy’ 
older training datasets, one of males and another one 
of females; and, on the other hand, ‘males with car-
diovascular factors’ (male–CF), i.e. with hyperten-
sion or diabetes or with blood glucose level above 
126  mg/dL or with systolic blood pressure above 
140 mmHg, and ‘females with cardiovascular factors’ 
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(female–CF), i.e. two older groups, one with males 
and another one only with females, both present-
ing relevant cardiovascular factors (see Table 1). For 
exploring the influence of particular cardiovascular 
factors on older participants, we created four train-
ing datasets with individuals above 60 years old [51]. 
One comprising participants with a confirmed diabe-
tes diagnosis or with blood glucose level exceeding 
126  mg/dL [31, 50], we called this training dataset 
‘diabetes’; another one comprising participants diag-
nosed with hypertension or systolic blood pressure 
above 140 mmHg [49], we called this dataset ‘hyper-
tension’, and two ‘control’ subgroups, ‘control dia-
betes’ and ‘control hypertension’, to compare against 
the ‘diabetes’ and ‘hypertension’ training datasets. 
The ‘control’ datasets consisted of ‘healthy’ partici-
pants with blood glucose level below 126 mg/dL and 
systolic blood pressure below 140  mmHg. Finally, 
we created one last training dataset comprising par-
ticipants with a uniform age distribution raging from 
18 to 87, mixed sex, with and without the presence 
of cardiovascular factors (hypertension and diabetes), 
we called this training data set ‘TD120’ (as is consti-
tuted by 120 participants); see Table 1 for a summary 

of the training datasets. Lastly, the number of partici-
pants in each training dataset was selected in order to 
maintain the same prevalence of these factors in the 
10000BRAINS cohort.

Aim 2: impact of relevant factors on test data

To identify if the presence of specific factors in 
the test data leads to (in)accurate delineation, we 
created 13 test datasets, each displaying a unique 
characteristic. We then compare the WML esti-
mations and performance of BIANCA, LPA and 
LGA within each group of individuals. Similar to 
the creation of the training datasets for aim 1, we 
first selected a subsample characterized solely by 
participants’ age, ensuring that no other relevant 
factors were present. We grouped these partici-
pants into five test datasets: age 18 (18–37 years), 
age 37 (37–47  years), age 47 (47–57  years), age 
57 (57–67  year) and age 67 (67–87  years) (as 
shown in Table  2). Secondly, we grouped partici-
pants above 60 years old [51] into four test datasets 
based on their sex and presence of cardiovascu-
lar factors: ‘males with no cardiovascular factors’ 

Table 1   Description of the training and validation datasets

Female–CF: females with cardiovascular factors; male–CF: males with cardiovascular factors; female–no CF: females with no car-
diovascular factors; male–no CF: males with no cardiovascular factors

Training and validation datasets No. of par-
ticipants

Glucose levels Diabetes Systolic blood pressure Hypertension

Age
  Age 18 (18–37) 10  < 126 mg/dL 0  < 140 mmHg 0
  Age 37 (37–47) 10  < 126 mg/dL 0  < 140 mmHg 0
  Age 47 (47–57) 13  < 126 mg/dL 0  < 140 mmHg 0
  Age 57 (57–67) 20  < 126 mg/dL 0  < 140 mmHg 0
  Age 67 (67–87) 11  < 126 mg/dL 0  < 140 mmHg 0
  Age 77 (77–87) 8  < 126 mg/dL 0  < 140 mmHg 0

Sex—age > 60 years old
  Female–CF 20  > 126 mg/dL 1  > 140 mmHg 1
  Male–CF 25  > 126 mg/dL 1  > 140 mmHg 1
  Female–no CF 11  < 126 mg/dL 0  < 140 mmHg 0
  Male–no CF 14  < 126 mg/dL 0  < 140 mmHg 0

Cardiovascular risk factors—age > 60 years old
  Diabetes 14  > 126 mg/dL 1  < 140 mmHg 0
  Control Diabetes 25  < 126 mg/dL 0  < 140 mmHg 0
  Hypertension 27  < 126 mg/dL 0  > 140 mmHg 1
  Control HYPERTENSION 31  < 126 mg/dL 0  < 140 mmHg 0
  TD120 120 All levels 0 and 1 All levels 0 and 1
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(male–no CF), ‘females without cardiovascular fac-
tors’ (female–no CF), ‘males with cardiovascular 
factors’ (male–CF), i.e. with hypertension or diabe-
tes or with blood glucose level above 126 mg/dL or 
with systolic blood pressure above 140 mmHg, and 
‘females with cardiovascular factors’ (female–CF) 
(see Table 2). Lastly, for exploring specifically the 
impact of particular cardiovascular factors on older 
participants, we created four test datasets. The first 
one, comprising participants with a confirmed dia-
betes diagnosis or presenting a blood glucose level 
exceeding 126  mg/dL [50], was called ‘diabetes’. 
The second one, integrating participants diagnosed 
with hypertension or presenting a systolic blood 
pressure above 140 mmHg [49], was denominated 
with the name ‘hypertension’. And two ‘control’ 
test datasets were called ‘control diabetes’ and 
‘control hypertension’. These ‘control’ test data-
sets consisted of ‘healthy’ participants with blood 
glucose level below 126 mg/dL and systolic blood 
pressure below 140  mmHg. All participants in 
these test datasets were above 60  years old [51] 
(see Table 2 for a summary of the test datasets).

Additional step: repeating aim 1 on characterised 
subsamples

As an additional step, after creating the character-
ised subsamples in aim 2, we repeated our analyses 
for aim 1 on each distinctive test dataset. This means 
we repeated analyses for aim 1 13 times, but instead 
of applying it to the entire 1000BRAINS cohort, 
we applied it to each characterised test dataset. This 
approach allowed us to analyse whether the influ-
ence of the relevant factors in the training data dif-
fered when the characteristics of the test subsamples 
changes.

Manual WML segmentation

To examine whether BIANCA’s WML estimations 
are influenced by the presence of relevant factors in 
the training data, we manually segmented the WML 
on FLAIR modality of the participants conforming 
each training dataset shown in Table 1 (total of 120 
participants). We did this with FSLeyes, a tool from 
FSL (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki). Binary 

Table 2   Description of the 13 test datasets

1 indicates a positive diagnosis and 0 no diagnosis. Female–CF: females with cardiovascular factors; male–CF: males with cardio-
vascular factors; female–no CF: females with no cardiovascular factors; male–no CF: males with no cardiovascular factors

Test datasets No. participants Glucose levels Diabetes Systolic blood pressure Hypertension

Age
  Age 18 (18–37) 86  < 126 mg/dL 0  < 140 mmHg 0
  Age 37 (37–47) 78  < 126 mg/dL 0  < 140 mmHg 0
  Age 47 (47–57) 113  < 126 mg/dL 0  < 140 mmHg 0
  Age 57 (57–67) 175  < 126 mg/dL 0  < 140 mmHg 0
  Age 67 (67–87) 95  < 126 mg/dL 0  < 140 mmHg 0

Sex–age > 60 years old
  Female–CF 180  > 126 mg/dL 1  > 140 mmHg 1
  Male–CF 286  > 126 mg/dL 1  > 140 mmHg 1
  Female–no CF 121  < 126 mg/dL 0  < 140 mmHg 0
  Male–no CF 101  < 126 mg/dL 0  < 140 mmHg 0

Cardiovascular risk factors—age > 60 years old
  Diabetes 52  > 126 mg/dL 1  < 140 mmHg 0
  Control diabetes 222  < 126 mg/dL 0  < 140 mmHg 0
  Hypertension 167  < 126 mg/dL 0  > 140 mmHg 1
  Control hypertension 222  < 126 mg/dL 0  < 140 mmHg 0

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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masks were generated with a value of 0 for non-WML 
voxels and 1 for WML voxels. Examples of manually 
segmented masks are shown in Fig. 1.

To analyze the performance of BIANCA, LPA 
and LGA on distinct characterised subsamples, 
we examined the degree of overlap between WML 
masks provided by the algorithms and manually seg-
mented WML masks. For this purpose, we employed 
the same data created in the previous step as valida-
tion data, i.e. the 120 manually segmented scans in 
FLAIR space. Since LGA uses T1 modality as base 
reference, we also required validation data in T1 
space. Therefore, we co-registered the manually seg-
mented WML masks in FLAIR space to T1 space 
using FLIRT from FSL for modality co-registration 
(FLAIR to T1). Detailed information on the number 
of participants in each validation dataset is provided 
in Table 1.

Automated WML segmentation algorithms

To address the first aim, we opted for one of the most 
widely used and established algorithms in the litera-
ture [27, 32, 39, 40, 52, 53], BIANCA [19]. BIANCA 
requires data pre-processing, selection of initial 
parameters and to be trained.

The pre-processing steps involved tools from FSL 
(http://​fsl.​fmrib.​ox.​ac.​uk/​fsl) [54]. We utilised BET 
to produce brain extracted images in FLAIR and T1 
modality, FLIRT for modality co-registration (T1 
to FLAIR) using linear rigid-body registration (6 
degrees), and normalization to the MNI152 standard 
template [55].

Regarding the initial parameters, we used T1 and 
FLAIR modalities, with FLAIR as the reference base 
modality. We followed the options recommended 
by [19] to optimise the dice similarity index (DSI) 
and false positive ratio. This included setting spatial 
weighting (sw) to 1 (default), no patch and select-
ing no border (excluding three voxels close to the 
lesion’s edge) for the location of non-lesion training 
points. We used a fixed and unbalanced (FU) num-
ber of training points, with 5000 for the number of 
lesion points and 25,000 for non-lesion points per 
training subject. The total WML volume, and hence 
the BIANCA estimation, was obtained by applying 
a threshold of 0.9 [19] to the lesion probability map, 
which constitutes the output of the algorithm. Further 
details can be found in [19].

BIANCA is trained by creating a feature space that 
includes both intensity and spatial features from the 
lesion and non-lesion voxels determined in the train-
ing data. Feature vectors for both classes, WML and 
non-WML, are created for each of the selected num-
ber of training points. Once the ‘training’ vectors 
are established in the feature space, classification of 
unseen voxels (unseen images) is performed by creat-
ing its own feature vector and measuring the distance 
to the 40 nearest training feature vectors (k-nearest 
neighbour). Therefore, by using each specific char-
acterised training data (shown in Table 1), BIANCA 
generated specific training feature vectors linked 
to each relevant factor. This approach allowed us to 
assess WML estimation differences when training 
data characteristics changed.

To address the second aim, we selected algorithms 
that, like BIANCA, are well established and broadly 

Fig. 1   Example of a manual segmentation on a FLAIR image

http://fsl.fmrib.ox.ac.uk/fsl
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used in the community [19, 21, 27, 32, 34, 36–43]. 
These algorithms include BIANCA itself, the Lesion 
Prediction Algorithm (LPA) [23] and the Lesion 
Growth Algorithm (LGA) [22].

In this case, BIANCA was trained on participants 
with a uniform age distribution ranging from 18 to 
87, mixed sex, with and without the presence of car-
diovascular factors, since this characterised dataset 
yelled the highest performance in aim 1.

LPA only requires the input modality: FLAIR. It 
also presents the option to include another modality 
as the base reference image. In this study, we tested 
the algorithm with two options, using only FLAIR 
modality and a combination of FLAIR + T1, using T1 
as base modality. We applied a threshold of 0.5 [23] 
to the lesion probability maps.

LGA requires T1 modality as a reference image 
along with FLAIR images. An initial threshold 
(kappa), user-determined, is needed. In our study, 
we selected a kappa value of 0.25 [22] and applied 
a threshold of 0.3 [22] to the lesion probability maps 
[22, 23].

We applied BIANCA, LPA and LGA to the 13 
characterised test datasets (described in Table 2) then 
compare their outputs and performance within each 
characteristic.

Statistical analysis

For aim 1, to determine whether BIANCA estima-
tions are influenced by the presence of relevant fac-
tors in the training data, we compared the estimated 
WML volumes obtained with each training dataset 
when the algorithms was applied to the 1000BRAINS 
cohort and to each characterised subsample depict-
ing different age distribution, stratified by sex, with 
and without the presence of cardiovascular factors 
(as shown in Table  2). Specifically, we examined 
how different characteristics present in the training 
data influenced the results obtained by BIANCA. We 
conducted these comparisons using mixed ANOVAs 
with Bonferroni post hoc tests. We applied this test to 
address the participants who are related to each other 
(between-subjects factor) and the variance introduced 
by the different training datasets (within-subjects 
factor).

We also analysed the performance in each case, to 
identify which composition of training data yielded 
the highest performance. We measured the degree of 

overlap between WML masks provided by BIANCA 
and WML manually segmented masks (see validation 
datasets in Table 1). We employed a specific metric 
for this purpose, the dice similarity index (DSI). The 
DSI is calculated as twice the number of voxels in the 
intersection of manual and algorithm masks divided 
by the sum of voxels manually segmented and algo-
rithm segmented voxels. This choice aligns with pre-
vious studies, which have identified the DSI as the 
most robust indicator of overlap between the manual 
mask and the estimated mask [19].

For aim 2, to identify if the presence of specific 
factors in the test data leads to (in)accurate delinea-
tion, we analysed the output differences of BIANCA, 
LPA and LG, as well as their performance when 
applied to individuals exhibiting different age distri-
bution, stratified by sex, with and without the pres-
ence of cardiovascular factors (details of individuals 
characteristics are shown in Table 2).

Regarding the output differences, we compared 
the outcomes of BIANCA versus LPA when using 
FLAIR modality only, versus LPA when using both 
T1 and FLAIR modalities, and versus LGA, within 
each characterised test data described in Table 2. For 
instance, we considered the test subgroup ‘hyperten-
sion’ as explanatory factor, and WML volume esti-
mations as dependent variable (within-subjects). We 
analysed these differences using mixed between-
within participants ANOVAs with Bonferroni post 
hoc tests.

Regarding the performance, we measured the 
degree of overlap between WML masks provided 
by the different algorithms and manually segmented 
WML masks (see validation datasets in Table  1) 
employing the DSI.

Results

Aim 1: influence of training data

First, we focused on the question on how different 
characteristics of training datasets would influence 
the WML estimations within one such algorithm, 
BIANCA. When exploring BIANCA’s output dif-
ferences a specific pattern of significant differ-
ences emerged for all test datasets, we found that 
different training datasets based on different age 
distribution (p < 0.001), stratified by sex (p < 0.01), 
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and with and without the presence of hypertensive 
individuals (p < 0.001) yielded different results as 
shown in Fig. 2.

Notably, WML volumes exhibited significant 
increases when BIANCA was trained on older 
participants, i.e., specifically on participants 
between 47 and 67 years old compared to partici-
pants between 18 and 47 years old (p < 0.001), see 
Fig.  2. Additionally, higher WML volumes were 
also observed when the algorithm was trained on 
females with cardiovascular risk factors, compared 
to training on males and females without cardio-
vascular factors (p < 0.01). Furthermore, higher 
WML volumes were observed when the algorithm 
was trained on the ‘hypertension’ training dataset 
in comparison to when trained on ‘healthy’ par-
ticipants (‘control hypertension’ training dataset 
(p < 0.001)).

When identifying peak performances, we spot-
ted that the highest similarities between output 
mask and manual segmentation (DSI ≥ 0.7) was 
achieved when the training dataset had a uniform 
age distribution ranging from 18 to 87, mixed sex, 
individuals with and without the presence of car-
diovascular factors, i.e. when BIANCA was trained 
on ‘TD120’ (see Fig. 2).

Aim 2: impact of relevant factors on test data

Secondly, we focused on the question how differ-
ent characteristics of test datasets would impact on 
WML estimations of three algorithms BIANCA, LPA 
and LGA. We examined the output and performance 
of the algorithms in each characterised test dataset 
described in Table 2.

Therefore, we first compared the estimated WML 
volumes between BIANCA vs. LPA using only 
FLAIR vs. LPA using T1 and FLAIR vs. LGA.

BIANCA vs. LPA vs. LGA—impact of ‘age’ on test 
data  We found a significant difference (p < 0.001) 
between the output of BIANCA and that of LPA 
for participants under 67  years of age, i.e. for test 
datasets ‘age18’, ‘age37’, ‘age47’ and ‘age57’ (see 
Fig.  3A). Specifically, LPA consistently provided 
lower WML estimations when compared to BIAN-
CA’s output which was evident in the WML distri-
butions in Fig.  3A. When comparing output masks 
with the manual segmentations, this discrepancy was 
also reflected in high similarities for BIANCA (mean 
DSI > 0.7) compared to lower similarities for LPA 
with only FLAIR modality (mean DSI < 0.4), and to 
LPA with FLAIR + T1 modality (mean DSI < 0.4); 

Fig. 2   Training data characteristics influences BIANCA’s 
WML estimations. Violin plots present the distribution of 
the total estimated WML volume as median values and quar-
tiles when BIANCA is trained on 15 different training data 

sets (x-axis) and applied to the whole 1000BRAINS cohort. 
**0.001 < p ≤ 0.01; ***: 0.0001 < p ≤ 0.001. Violin plots were 
made with seaborn library
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see Fig.  3B. Furthermore, we observed that LGA’s 
output showed significantly (p < 0.001) lower WML 
estimations than BIANCA’s for participants under 
67  years of age (Fig.  3A). This is consistent with 
low similarities observed for LGA when applied to 
participants under 67  years of age (mean DSI < 0.3, 
Fig.  3B). BIANCA, however, showed highest simi-
larities (mean DSI > 0.7) when applied to all age dis-
tributions (Fig. 3B).

BIANCA vs. LPA vs. LGA—impact of ‘sex’ on 
test data  Results show significant differences 
(p < 0.001) between the outputs of BIANCA and 
LPA when using only the FLAIR modality. Spe-
cifically, in older males without cardiovascular fac-
tors (see Fig.  3A), BIANCA yielded higher WML 
estimation volumes compared to LPA. At the same 
time, higher DSI (> 0.7), i.e. a higher similarity, is 
observed for BIANCA’s output compared to LPA’s 
(FLAIR) output (DSI < 0.6, Fig.  3B). Furthermore, 
significant differences (p < 0.001) between the out-
puts of BIANCA, LPA and LGA were observed for 

older females without cardiovascular factors: notably, 
BIANCA shows higher WML volumes compared to 
all other algorithms (see Fig.  3A). Again, this is in 
line with higher observed performance for BIANCA 
(mean DSI > 0.7) compared to all other algorithms 
(mean DSI < 0.6, see Fig. 3B). No significant differ-
ences were observed between LGA and LPA’s output 
when they were applied to older males and females 
with and without cardiovascular factors (Fig. 3A). For 
all sex-stratified test data, BIANCA showed the high-
est performance (mean DSI > 0.7, see Fig. 3B).

BIANCA vs. LPA vs. LGA—impact of ‘cardio-
vascular factors’ on test data  In contrast to our 
previous findings, we did not observe any signifi-
cant difference between the algorithms’ output when 
they are applied to older individuals with high blood 
glucose levels, diabetes, high blood pressure levels, 
hypertension and healthy controls, i.e. for test data-
sets ‘diabetes’, ‘control diabetes’, ‘hypertension’ and 
‘control hypertension’ (see Fig.  3A). LPA(FLAIR), 
LPA(FLAIR + T1) and LGA showed a good 

Fig. 3   Impact of test data characteristics on outputs and per-
formance of BIANCA, LPA and LGA. Presented are A mean 
WML estimations (ml) for each test datasets (x-axis) depend-
ing on the four algorithms with standard deviations. B Perfor-
mance of each algorithm is measured by the DSI indicating the 
similarity between the algorithms WML segmentation mask 

and the manual segmentation mask, where violin plots illus-
trate the distribution of DSI with mean values and standard 
deviations. Abbreviations: LPA(FLAIR) = LPA using only the 
FLAIR modality, LPA (FLAIR + T1) = LPA using the FLAIR 
and T1 modalities; ***0.0001 < p ≤ 0.001. Violin plots and 
point plots were made with seaborn library
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performance (mean DSI, 0.55–0.69) for older indi-
viduals with high blood glucose levels, diabetes, high 
blood pressure levels or hypertension, and BIANCA 
outperformed all of these with a mean DSI > 0.7; see 
Fig. 3B.

Additional step: repeating aim 1 on characterised 
subsamples

When repeating the analysis of aim 1 on the sub-
samples created on aim 2, the same pattern of dif-
ferences found in aim 1 was found in almost all test 
datasets. There was a slight difference in the pattern 
found in participants between 57 and 87 years old. 
Here, higher WML volumes were observed when the 
algorithm was trained on females with cardiovascu-
lar risk factors, compared to training only on males 
without cardiovascular factors (p < 0.01). Please refer 
to the supplement material (Fig.  s1E and D) to see 
this slight variation in the pattern of WML estimated 
differences. When looking at each subgroup individu-
ally (Fig. s1–s3), we noticed that the highest similari-
ties between output mask and manual segmentation 
(DSI ≥ 0.7) was achieved when the training dataset 
had a uniform age distribution ranging from 18 to 87, 
mixed sex, individuals with and without the presence 
of cardiovascular factors, i.e. when BIANCA was 
trained on ‘TD120’, replicating the same result found 
in aim 1 (Fig. s1–s3). We also observed that high sim-
ilarities were achieved when test datasets presented 
similarity with the training datasets, e.g. regarding 
age or (non-)presence of risk factors. This was most 
observable in the age 37 test subgroup, where WML 
estimations where most accurate when using train-
ing data from participants under 37 years of age. For 
most other groups, the range was wider; e.g. for the 
youngest age decade (‘age 18’ subgroup), the most 
accurate WML estimations were achieved when using 
a training dataset comprising participants under 47 
years old without cardiovascular risk factors. Please 
refer to the supplement material (Fig.  s1–s3) for a 
detailed depiction of all DSI results.

Discussion

In this study, we aimed to investigate the effect of 
different relevant influencing factors on automatic 
WML estimations in a large sample of normal aging 

participants. We selected three freely available and 
widely used algorithms, BIANCA, LPA and LGA, 
and compared their outputs and performance under 
different conditions.

The first aim of this study was to determine 
whether automatic WML estimations are influenced 
by the presence of relevant factors in the train-
ing dataset. Specifically, we found that (i) training 
datasets induce bias when they consist of a narrow 
selection of characteristics, i.e. including only older 
participants, females with cardiovascular factors or 
only hypertensive individuals, as shown in our anal-
yses comparing 15 different training datasets within 
BIANCA. Trained on these datasets, BIANCA over-
estimated WML volumes compared to when it was 
trained on younger participants, opposite sex and con-
trol individuals. Moreover, BIANCA’s best perfor-
mance was achieved when trained on 120 individuals 
from all ages, both sexes and including individuals 
without the presence of cardiovascular factors.

The second aim was to compare WML estimations 
and performance of BIANCA, LPA and LGA when 
applied to test subgroups with specific risk factor pro-
files. Here, (ii) WML estimations of LPA and LGA 
differ significantly from BIANCA; they underesti-
mated the total WML volumes, e.g. in subjects under 
67  years of age or older females without cardiovas-
cular risk factors. (iii) LPA and LGA showed a poor 
performance when applied to subjects under 67 years 
of age without cardiovascular risk factors (DSI < 0.4). 
BIANCA showed a robust and the highest perfor-
mance (DSI > 0.7) across all subgroups with specific 
risk factor profiles.

The necessity for a reliable automated segmenta-
tion is evident by the cumulus works dedicated to 
standardize the evaluation of WML load [18, 27, 56]. 
Despite the number of proposed methods [19, 22, 23, 
25, 37, 57–69] and the attempts of improving them, 
an outstanding algorithm has not been recognized 
yet [56, 70]. Caligiuri et al. (2015) [18] compared 34 
different WML automatic methods, including super-
vised learning algorithms, unsupervised algorithms 
and automated and semi-automated algorithms. They 
established that many of these algorithms are not 
freely available, and they have been validated mostly 
with small samples and are study and/or protocol 
specific. In our study, we choose BIANCA, LPA and 
LGA because they are freely available, they are com-
monly used in the community [21, 27, 32, 34, 36–43, 
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71], they are fully automated and the major differ-
ence regarding their use is that LPA and LGA do not 
require training data; meanwhile, BIANCA does. We 
aimed at providing a more differentiated perspective 
on the usage of such algorithms beyond the ques-
tion of one optimal algorithm, but focusing on the 
relevance of potential sources of bias for algorithm 
performance and outcome when used in large popula-
tion-based samples.

Regarding the first aim of the present study, we 
showed a discernible pattern of significant differences 
in BIANCA’s WML volume estimations emerged 
based on different training datasets related to age, sex, 
and hypertension. Notably, significantly higher WML 
loads were observed when BIANCA was trained on 
older individuals (Fig.  2), compared to when it was 
trained on younger individuals. This observation 
could indicate that the age composition of the train-
ing dataset plays an important role in the accuracy of 
WML volume estimations. Specifically, relying solely 
on older adults or exclusively on younger adults 
within a cohort could introduce bias, potentially lead-
ing to either an overestimation or underestimation 
of WML volumes. This emphasizes the importance 
of constructing a well-balanced training dataset that 
encompasses a diverse representation of ages to avoid 
bias WML estimations.

Moreover, elevated WML volumes were noted 
when the algorithm was trained on females with car-
diovascular risk factors (Fig.  2). Similarly, higher 
WML estimations were observed when the train-
ing sample consisted of individuals with high blood 
pressure or hypertension. Previous studies indicate 
a higher WML load in participants with hyperten-
sion [29, 53]. This together with our results suggests 
that including only participants with these factors in 
the training data has the potential to markedly alter 
the estimations of WML volume estimations. These 
findings highlight the substantial influence of train-
ing data characteristics on WML volume extraction, 
emphasizing the need for a comprehensive train-
ing data where male and female participants with 
and without cardiovascular factors are needed in 
order to avoid bias in the WML volume estimations. 
Accentuating this point, the highest performance 
(DSI, 0.70–0.78) was observed when BIANCA was 
trained on a group of individuals with uniform age 
distribution ranging from 18 to 87, mixed sex, with 
and without the presence of cardiovascular factors, 

representing a balanced and proportioned charac-
terization of the influencing factors present in the 
1000BRAINS cohort.

Regarding the second aim, we could show that 
LPA and LGA underestimated the total WML vol-
umes in participants under 67  years of age and in 
older females without cardiovascular risk factors. 
This aligns with the low performance (DSI < 0.4) of 
these algorithms on individuals under 67  years old. 
To evaluate performance as moderate or good, a DSI 
of > 0.6 is usually expected [27]. Heinen et al. (2019) 
[26] explored the performance of LGA and LPA in 
a study involving 60 subjects with vascular cogni-
tive impairment. Their findings indicated a relatively 
lower performance for LGA when compared to LPA. 
Our findings from a large group of normal aging par-
ticipants also indicate a lower performance for LGA 
compared to LPA, thus expanding previous evidence 
from clinical conditions to the normally aging popu-
lation. This consistency across studies emphasizes 
the importance of considering the algorithm’s per-
formance characteristics in specific demographic and 
clinical contexts.

BIANCA has been tested, validated and applied 
in many different cohorts [27, 32, 39, 53]. A recent 
study by Hotz et al. (2022) [32] explored WML esti-
mation in 232 healthy subjects aged 64–87, employ-
ing three different algorithms, including BIANCA. 
They reported a mean DSI of 0.6 using a random 
training dataset from the cohort comprising 16 
FLAIR images with manually segmented lesions. 
In our study, we tested 15 combinations of relevant 
factors in the training dataset, identifying the highest 
performance (mean DSI > 0.7) when the training data 
characteristics were similar to those of the cohort.

LPA has been trained on 53 multiple sclero-
sis patients with severe lesion patterns, with a total 
WML volumes higher than 10 mL, reflecting a com-
parably high amount of WML load. Similar to LPA, 
LGA was originally developed for lesion segmenta-
tion in patients with multiple sclerosis [22]. How-
ever, it has also been used for WML segmentation 
in, e.g. cognitively unimpaired older adults [38], 
individuals with dementia and cognitive impairment 
[27] and individuals with diabetes [21]. It has been 
established that methods trained on multiple sclero-
sis patients perform relatively well when applied to 
geriatric patients [57]. This aligns to the results we 
observed, where LPA’s performance improves for 
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participants > 60 years of age with cardiovascular risk 
factors (who also present high WML burden). Yet, the 
performance of the algorithm is not optimal for par-
ticipants under 67 years of age without cardiovascu-
lar risk factors (DSC < 0.4). These changes in LPA’s 
performance are comparable with the drop in perfor-
mance for LGA. With LPA being pre-trained on mul-
tiple sclerosis patients with high amounts of WML, 
accurate delineations of WML in normally aging par-
ticipants might be limited, as boundaries of multiple 
sclerosis lesions present with more clearly delineable 
edges as compared to age-related WML [18].

Our study thus would allow to conclude that LPA 
and LGA are suboptimal for automatic segmentation 
of WML for participants under 67 years of age with-
out cardiovascular risk factors. However, they can 
be a very good and fast choice to estimate WML on 
participants > 60 years of age with cardiovascular risk 
factors, particularly LPA since it presented higher 
performance than LGA and uses the pretrained algo-
rithm as implemented in the lesion segmentation tool-
box (LST).

Limitations

While we compared three widely used algorithms 
(BIANCA, LPA and LGA), there are other segmen-
tation methods available in the literature. Our study 
focused on these three algorithms due to their com-
mon usage and availability. Different algorithms 
may yield different results, and future research could 
explore additional methods. The performance of 
machine learning algorithms, like BIANCA, can be 
highly dependent on the quality and representative-
ness of the training dataset. While we attempted to 
create a diverse training dataset based on the influenc-
ing factors, there may still be factors not considered 
in our study that could affect segmentation accuracy. 
In this study, the manual delineations were performed 
by a trained physicist specialized in medical image 
analysis supervised by a physician who selectively 
checked delineations; i.e. there was only one inde-
pendent rater; therefore, there were no consensus 
procedure and no interrater reliability measure. The 
findings of this study are based on a specific cohort 
of normal aging individuals and may not fully gen-
eralize to other populations, such as clinical patients 
or individuals with neurodegenerative diseases. The 
impact of influencing factors on WML estimation 

may differ in different populations. Lastly, the data 
used is cross-sectional, and it may be of high inter-
est to study the intra-subject variability of WML seg-
mentation in relation to these influencing factors in a 
longitudinal dataset.

Conclusion

Our study provides insights to minimizing sources of 
bias that may influence the white matter lesion esti-
mations when using three freely available segmenta-
tion algorithms: LGA, LPA and BIANCA.

Based on our results, we see the importance of 
considering a comprehensive characterization of the 
sample dataset with special importance in lifestyle 
and influencing factors to the segmentation meth-
odology to avoid sources of bias in the estimations 
of WMLs. Specifically, we encourage the users of 
BIANCA to prepare training datasets that embed, in 
a smaller scale, a representation of the distribution in 
terms of age, sex and hypertension. LGA showed the 
lowest performance compared to LPA and BIANCA. 
LPA proved to be a suitable and fast alternative for 
participants with certain characteristics, e.g. above 
60  years of age with cardiovascular risk factors. 
BIANCA presented the highest performance across 
all the subgroups compared to LPA and LGA. How-
ever, it is important to note that BIANCA’s prepara-
tion of the training dataset takes time and expertise.

We suggest to be aware of the changes in WML 
estimations and accuracy when applying the LPA or 
LGA to subjects under 60 years of age.

In the future, it would be of interest to investigate 
how other influencing factors such as obesity, cho-
lesterol levels, physical activity, smoking or genet-
ics, e.g. APOE status, could impact automatic WML 
estimations.
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