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Abstract Brain magnetic resonance imaging fre-
quently reveals white matter lesions (WMLs) in
older adults. They are often associated with cognitive
impairment and risk of dementia. Given the continu-
ous search for the optimal segmentation algorithm,
we broke down this question by exploring whether the
output of algorithms frequently used might be biased
by the presence of different influencing factors. We
studied the impact of age, sex, blood glucose levels,
diabetes, systolic blood pressure and hypertension on
automatic WML segmentation algorithms. We evalu-
ated three widely used algorithms (BIANCA, LPA
and LGA) using the population-based 1000BRAINS
cohort (N=1166, aged 18-87, 523 females, 643
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males). We analysed two main aspects. Firstly, we
examined whether training data (TD) characteristics
influenced WML estimations, assessing the impact
of relevant factors in the TD. Secondly, algorithm’s
output and performance within selected subgroups
defined by these factors were assessed. Results
revealed that BIANCA’s WML estimations are influ-
enced by the characteristics present in the TD. LPA
and LGA consistently provided lower WML estima-
tions compared to BIANCA'’s output when tested on
participants under 67 years of age without risk car-
diovascular factors. Notably, LPA and LGA showed
reduced accuracy for these participants. However,
LPA and LGA showed better performance for older
participants presenting cardiovascular risk factors.
Results suggest that incorporating comprehensive
cohort factors like diverse age, sex and participants
with and without hypertension in the TD could
enhance WML-based analyses and mitigate potential
sources of bias. LPA and LGA are a fast and valid
option for older participants with cardiovascular risk
factors.

Keywords White matter lesion - BIANCA - LPA -
LGA - Training data characteristics
Introduction

White matter lesions (WMLs) of presumed vascular
origin, also known as white matter hyperintensities
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(WMHs) due to their hyperintense appearance on
T2-weighted, fluid attenuated inversion recovery
(FLAIR) and proton density-weighted images, are
common findings on brain magnetic resonance imag-
ing (MRI) scans of older adults [1]. They are an
expression of small vessel disease (SVD) [2]. Their
prevalence increases with age [3, 4] and they are
associated with cognitive impairment [5] and risk of
dementia [6].

The assessment of WML for a clinical diagnosis,
such as mild cognitive impairment or dementia [7],
is typically performed by visual inspections of the
MR scans using rating scales (e.g.: [8-11]). How-
ever, this method requires trained personnel, it is
time-consuming, it has high intra- and inter-operator
variability, and it provides semi-quantitative infor-
mation [12—-14]. Volumetric measurements of WML
offer an improved alternative [14, 15]. While manual
segmentation of WML is feasible for small studies,
automated segmentation algorithms are necessary for
large cohort datasets, such as the UK Biobank [16] or
the German National Cohort (NAKO) [17]. In recent
years, numerous algorithms have been developed for
automatic WML segmentation [18]. An example is
the well-established and widely used Brain Intensity
AbNormality Classification Algorithm (BIANCA), a
fully automated, supervised machine learning method
based on the k-nearest neighbour (k-NN) algorithm,
which mandates training datasets [19]. BIANCA
allows to be trained by customised training datasets
to then be applied to unseen brain images. Together
with the training dataset, an initial set of parameters
is needed. These parameters determine in which way
the spatial and intensity information derived from
the training data are utilised, as well as the number
of training data points employed. Another example is
the lesion growth algorithm (LGA), originally devel-
oped for segmenting lesions in multiple sclerosis
(MS) patients. This is an unsupervised algorithm that
has also been applied to segment the WML of cog-
nitively unimpaired elderly individuals [20] and indi-
viduals with other conditions such as diabetes melli-
tus [21]. LGA employs T1 and FLAIR data to create
a lesion belief map. After an initial user-determined
parameter, the initial threshold kappa, is applied to
the lesion belief maps, intensity outliers are identi-
fied. These outliers will then be expanded by analys-
ing the intensity of neighbouring voxels. This is done
by applying an iterated growth algorithm that uses
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maximum likelihood estimators to create a probabil-
ity lesion map [22]. The algorithm stops when the
estimator reaches a predefined limit. Therefore, LGA
does not mandate training data, but it needs an ini-
tial user-selected parameter [22]. Another common
algorithm used in the study of WML is the lesion
prediction algorithm (LPA), a binary classifier using
logistic regression, trained on data of 53 MS patients
with severe lesion patterns [23]. LPA does not need
initial parameters to be set nor training data, as the
algorithm is already trained on a specific MS train-
ing dataset. Over the past years, many studies have
focused on identifying the best automatic segmen-
tation methodology, i.e., the one with the highest
performance, whether supervised, unsupervised,
automatic or semi-automated [18, 19, 22, 24-26].
Despite efforts to optimize these methods, an out-
standing automatic method has not been identified yet
[18, 27]. Although most of the algorithms have been
tested individually [18], a comprehensive comparison
across various WML segmentation algorithms is still
needed to identify which ones accurately delineate
WML patterns.

The occurrence of WML, however, has been
shown to be significantly influenced by high blood
pressure levels, hypertension, obesity, blood glucose
levels, diabetes, age, sex, smoking and low physical
activity [28-31]. Participants with levels of these fac-
tors associated with a less health conscious lifestyle
tend to present a higher total WML volume. Auto-
matic segmentation methods like BIANCA have been
tested using random training datasets, e.g. [32] or
datasets focused on the WML load, comprising par-
ticipants with low, medium and high amount of WML
[27, 33]. Yet, the information contained in training
datasets might be highly related to the information
that can be identified and ‘learned’ by the algorithm.
If the training data is very specific, it might limit the
algorithm’s knowledge and generalizability to other
datasets, potentially introducing bias on the WML
volume estimations. For example, if the selection is
too narrow, such as including only participants with
high WML load, the algorithm may be biased towards
accurately segmenting only high amounts of WML
and perform poorly for participants with low amount
of WML. The algorithm could also tend to overesti-
mate scans with a low WML amount. Similarly, if the
training data consist solely of hypertensive partici-
pants, the algorithm performance may be low when
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applied to healthy individuals. Hence, it might be
expected that the output of the algorithm is influenced
by the training data, while in turn it is still unclear
how the algorithm reacts to data, which it has not
seen. Since groups of people with different levels of
the above-mentioned lifestyle and risk factors likely
present different patterns of WML, the composition
of the training data might be crucial for the algo-
rithms output. Thus, analysing differences in WML
estimations using distinctly selected training datasets
that represent various relevant factors influencing the
WML load is relevant to evaluate the accuracy of the
algorithms, yet it remains to be explored. Addition-
ally, automated methods that do not require training
datasets, such as LGA and LPA, have undergone test-
ing and validation across various cohorts composed
of cognitive impaired participants, individuals with
dementia, and in healthy older adults (50-78 years)
[20, 26, 27, 34, 35]. However, evaluating their perfor-
mance on different subsamples within a cohort, com-
posed of distinct relevant influencing factors, remains
to be elucidated. This is crucial for determining
whether the accuracy and performance of a particular
algorithm remain consistent across the entire cohort
or if it performs better only for participants present-
ing specific factors. Thus, determining which WML
patterns—influenced by specific risk factors—can
be reliably detected by which of the algorithms still
needs to be elucidated.

Hence, the first aim of this study is to determine if
the composition of the training data influences WML
estimations. Specifically, we aim to discover if bias
is introduced when the algorithm is trained on indi-
viduals with specific relevant factors. Since LGA and
LPA do not require training, whereas BIANCA does,
we will use BIANCA to address this question. We
will test BIANCA when trained on different datasets,
each one with a specific focus on a relevant influenc-
ing factor for WML load. Therefore, we will train
BIANCA multiple times, each time on a group of
individuals with a specific selection of relevant char-
acteristics, i.e. age, sex, blood glucose levels, diabe-
tes, blood pressure levels and hypertension. Here, we
will also identify which composition of training data
yields the highest performance.

The second aim is to evaluate the output and per-
formance of three different algorithms, with respect
to the presence of specific relevant characteristics in
the fest data; i.e. we aim to identify, if the different

algorithms produce (in)accurate delineation when
applied to specific subgroups of individuals. If so,
we examine which characteristics in the test data
are of concern for which of the algorithms. There-
fore, we will compare the output and performance
of BIANCA, LPA and LGA against each other when
applied to individuals exhibiting specific influencing
factors, i.e. age, sex, blood glucose levels, diabetes,
blood pressure levels and hypertension. For this aim,
BIANCA will be used with the training setup that
yielded the highest performance in the 1st aim.

Results show that the composition of training data-
sets influences BIANCA’s WML estimations, intro-
ducing bias when the training data is very specific;
e.g. when only trained on younger participants, WML
load will systematically be underestimated. BIAN-
CA’s highest performance was identified when the
algorithm was trained on a group of individuals pre-
senting all different relevant influencing factors. LPA
and LGA performed poorly when applied to partici-
pants younger than 67 years of age (mean DSI<0.4)
but their performance improved for older partici-
pants with cardiovascular risk factors. BIANCA out-
performed (mean DSI>0.7) LPA and LGA when
applied to different groups of individuals presenting
all different cohort characteristics.

Materials and methods

For this study, we used three established and avail-
able segmentation algorithms, i.e. BIANCA, LPA and
LGA, since they are freely available, are widely used
in the community [19, 21, 27, 32, 34, 36-43] and use
different methodological approaches for segmenting
the WML.

Participants

The data used in this study is sourced from the
population-based 1000BRAINS cohort [44], which
focuses on investigating structural and functional
variations in the normal aging brain. Participants
were recruited from the Heinz-Nixdorf-Recall (HNR)
study and the related HNR-Multi-Generation-study
[45]. This dataset includes a wide range of epide-
miological information, such as neuropsychological
tests, life quality, mood and daily activities, as well as
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laboratory, genetic, clinical, socioeconomic and envi-
ronmental data.

Inclusion criteria for the present study required
participants to be free from strokes and provide com-
plete data, including FLAIR and T1 images, along
with age, sex, blood glucose levels, systolic and dias-
tolic blood pressure levels, diabetes diagnosis and
hypertension diagnosis. Initially, there were 1314
participants, but 55 were excluded due to incomplete
laboratory information (see ‘Influencing factors’
section), 65 lacked the complete set of T1+FLAIR
modalities and 28 were excluded because of any type
of tissue defects post stroke. In total, 1166 partici-
pants (mean age =060, range 18-87, female (F):male
(M) 523:643) from the first visit, as detailed in [44],
were included in this study. Participants belonging
to the same family were addressed in the statisti-
cal analysis described in a later section. All partici-
pants provided informed consent in accordance with
the Declaration of Helsinki. The study protocol of
1000BRAINS was approved by the ethics committee
of the University of Duisburg-Essen.

MRI data

MRI brain scans were conducted using a 3-T MR
scanner (Siemens Tim-TRIO; for the whole proto-
col, see Caspers et al. 2014). The sequences included
in this study were as follows: a 3D T1-weighted
MPRAGE (176 slices, TR=2.25 s, TE=3.03 ms,
TI=900 ms, FoV=256%256 mm?, flip angle=9°,
voxel resolution=1x1x1 mm®) and a clinical
T2-weighted FLAIR (25 slices, TR=9 s, TE=100
ms, FoV=220x220 mm?, flip angle=150°, voxel
resolution=0.9x0.9 x4 mm?).

Relevant influencing factors

Given the associations between WML and age, sex,
high blood glucose levels, diabetes, high blood pres-
sure and hypertension demonstrated in previous stud-
ies [29, 31, 46-48], we included these influencing
factors in the present study. The following informa-
tion was considered for each participant: age, sex,
systolic blood pressure (mmHg), diastolic blood pres-
sure (mmHg), whether participants had received a
diagnosis of hypertension, the participants’ respective
medication against hypertension (if applicable), and
blood glucose levels (mg/dL) and whether subjects
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had a diagnosis of diabetes mellitus. A participant
was considered to have diabetes if having a respective
confirmed diagnosis. Subjects with confirmed diag-
nosis of hypertension or taking medication against
hypertension were considered to have hypertension.

Evaluating the impact of relevant influencing factors
on automatic WML estimations

Aim 1: influence of training data

To determine if the composition of the training data
influences BIANCA’s WML estimations, we cre-
ated 15 training datasets, each showcasing a unique
characteristic that could potentially influence BIAN-
CAs’ outcome. We then trained the algorithm 15
times, each time for each training dataset, and com-
pared the resulting WML estimations of the whole
1000BRAINS cohort. First, we selected a subsample
characterised solely by participants’ age, ensuring
that no other relevant factor was present. Specifically,
we excluded participants with hypertension, systolic
blood pressure exceeding 140 mmHg [49], diabe-
tes or a blood glucose level above 126 mg/dL [50].
We grouped these participants into six training data-
sets: age 18 (18-37 years), age 37 (37-47 years),
age 47 (47-57 years), age 57 (57-67 year), age 67
(6777 years) and age 77 (77-87 years) (as shown in
Table 1). We followed the same approach for studying
the influence of all other relevant factors, i.e. select-
ing one factor of interest and keeping all other fac-
tors stable in the respective subsample. For exploring
the influence of sex, we selected two subsamples of
participants above 60 years old [51]: one without car-
diovascular factors (hypertensions and diabetes) and
another one with these factors. We then grouped the
participants according to their sex, resulting in four
more training datasets: ‘males with no cardiovascular
factors’ (male-no CF), i.e. males with no hyperten-
sion and/or diabetes, with blood glucose level below
126 mg/dL, and with systolic blood pressure below
140 mmHg, and ‘females without cardiovascular fac-
tors’ (female-no CF), i.e. we created two ‘healthy’
older training datasets, one of males and another one
of females; and, on the other hand, ‘males with car-
diovascular factors’ (male—CF), i.e. with hyperten-
sion or diabetes or with blood glucose level above
126 mg/dL or with systolic blood pressure above
140 mmHg, and ‘females with cardiovascular factors’
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Table 1 Description of the training and validation datasets
Training and validation datasets No. of par- Glucose levels Diabetes Systolic blood pressure Hypertension
ticipants
Age
Age 18 (18-37) 10 <126 mg/dL 0 <140 mmHg 0
Age 37 (37-47) 10 <126 mg/dL 0 <140 mmHg 0
Age 47 (47-57) 13 <126 mg/dL 0 <140 mmHg 0
Age 57 (57-67) 20 <126 mg/dL 0 <140 mmHg 0
Age 67 (67-87) 11 <126 mg/dL 0 <140 mmHg 0
Age 77 (77-87) 8 <126 mg/dL 0 <140 mmHg 0
Sex—age > 60 years old
Female—CF 20 > 126 mg/dL 1 > 140 mmHg 1
Male-CF 25 > 126 mg/dL 1 > 140 mmHg 1
Female-no CF 11 <126 mg/dL 0 <140 mmHg 0
Male-no CF 14 <126 mg/dL 0 <140 mmHg 0
Cardiovascular risk factors—age > 60 years old
Diabetes 14 > 126 mg/dL 1 <140 mmHg 0
Control Diabetes 25 <126 mg/dL 0 <140 mmHg 0
Hypertension 27 <126 mg/dL 0 > 140 mmHg 1
Control HYPERTENSION 31 <126 mg/dL 0 <140 mmHg 0
TD120 120 All levels Oand 1 All levels Oand 1

Female—CF: females with cardiovascular factors; male—CF: males with cardiovascular factors; female—no CF: females with no car-

diovascular factors; male-no CF: males with no cardiovascular factors

(female—CF), i.e. two older groups, one with males
and another one only with females, both present-
ing relevant cardiovascular factors (see Table 1). For
exploring the influence of particular cardiovascular
factors on older participants, we created four train-
ing datasets with individuals above 60 years old [51].
One comprising participants with a confirmed diabe-
tes diagnosis or with blood glucose level exceeding
126 mg/dL [31, 50], we called this training dataset
‘diabetes’; another one comprising participants diag-
nosed with hypertension or systolic blood pressure
above 140 mmHg [49], we called this dataset ‘hyper-
tension’, and two ‘control’ subgroups, ‘control dia-
betes’ and ‘control hypertension’, to compare against
the ‘diabetes’ and ‘hypertension’ training datasets.
The ‘control’ datasets consisted of ‘healthy’ partici-
pants with blood glucose level below 126 mg/dL and
systolic blood pressure below 140 mmHg. Finally,
we created one last training dataset comprising par-
ticipants with a uniform age distribution raging from
18 to 87, mixed sex, with and without the presence
of cardiovascular factors (hypertension and diabetes),
we called this training data set “TD120’ (as is consti-
tuted by 120 participants); see Table 1 for a summary

of the training datasets. Lastly, the number of partici-
pants in each training dataset was selected in order to
maintain the same prevalence of these factors in the
10000BRAINS cohort.

Aim 2: impact of relevant factors on test data

To identify if the presence of specific factors in
the test data leads to (in)accurate delineation, we
created 13 test datasets, each displaying a unique
characteristic. We then compare the WML esti-
mations and performance of BIANCA, LPA and
LGA within each group of individuals. Similar to
the creation of the training datasets for aim 1, we
first selected a subsample characterized solely by
participants’ age, ensuring that no other relevant
factors were present. We grouped these partici-
pants into five test datasets: age 18 (18-37 years),
age 37 (37-47 years), age 47 (47-57 years), age
57 (57-67 year) and age 67 (67-87 years) (as
shown in Table 2). Secondly, we grouped partici-
pants above 60 years old [51] into four test datasets
based on their sex and presence of cardiovascu-
lar factors: ‘males with no cardiovascular factors’

@ Springer
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Table 2 Description of the 13 fest datasets

Test datasets No. participants Glucose levels Diabetes Systolic blood pressure Hypertension
Age
Age 18 (18-37) 86 <126 mg/dL 0 <140 mmHg 0
Age 37 (37-47) 78 <126 mg/dL 0 <140 mmHg 0
Age 47 (47-57) 113 <126 mg/dL 0 <140 mmHg 0
Age 57 (57-67) 175 <126 mg/dL 0 <140 mmHg 0
Age 67 (67-87) 95 <126 mg/dL 0 <140 mmHg 0
Sex—age > 60 years old
Female-CF 180 > 126 mg/dL 1 > 140 mmHg 1
Male-CF 286 > 126 mg/dL 1 > 140 mmHg 1
Female-no CF 121 <126 mg/dL 0 <140 mmHg 0
Male-no CF 101 <126 mg/dL 0 <140 mmHg 0
Cardiovascular risk factors—age > 60 years old
Diabetes 52 > 126 mg/dL 1 <140 mmHg 0
Control diabetes 222 <126 mg/dL 0 <140 mmHg 0
Hypertension 167 <126 mg/dL 0 > 140 mmHg 1
Control hypertension 222 <126 mg/dL 0 <140 mmHg 0

1 indicates a positive diagnosis and 0 no diagnosis. Female—CF: females with cardiovascular factors; male—CF: males with cardio-

vascular factors; female—no CF: females with no cardiovascular factors; male-no CF: males with no cardiovascular factors

(male—no CF), ‘females without cardiovascular fac-
tors’ (female—no CF), ‘males with cardiovascular
factors’ (male—CF), i.e. with hypertension or diabe-
tes or with blood glucose level above 126 mg/dL or
with systolic blood pressure above 140 mmHg, and
‘females with cardiovascular factors’ (female—CF)
(see Table 2). Lastly, for exploring specifically the
impact of particular cardiovascular factors on older
participants, we created four test datasets. The first
one, comprising participants with a confirmed dia-
betes diagnosis or presenting a blood glucose level
exceeding 126 mg/dL [50], was called ‘diabetes’.
The second one, integrating participants diagnosed
with hypertension or presenting a systolic blood
pressure above 140 mmHg [49], was denominated
with the name ‘hypertension’. And two ‘control’
test datasets were called ‘control diabetes’ and
‘control hypertension’. These ‘control’ test data-
sets consisted of ‘healthy’ participants with blood
glucose level below 126 mg/dL and systolic blood
pressure below 140 mmHg. All participants in
these test datasets were above 60 years old [51]
(see Table 2 for a summary of the test datasets).
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Additional step: repeating aim 1 on characterised
subsamples

As an additional step, after creating the character-
ised subsamples in aim 2, we repeated our analyses
for aim 1 on each distinctive test dataset. This means
we repeated analyses for aim 1 13 times, but instead
of applying it to the entire 1000BRAINS cohort,
we applied it to each characterised fest dataset. This
approach allowed us to analyse whether the influ-
ence of the relevant factors in the training data dif-
fered when the characteristics of the fest subsamples
changes.

Manual WML segmentation

To examine whether BIANCA’s WML estimations
are influenced by the presence of relevant factors in
the training data, we manually segmented the WML
on FLAIR modality of the participants conforming
each training dataset shown in Table 1 (total of 120
participants). We did this with FSLeyes, a tool from
FSL  (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Binary
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Fig. 1 Example of a manual segmentation on a FLAIR image

masks were generated with a value of 0 for non-WML
voxels and 1 for WML voxels. Examples of manually
segmented masks are shown in Fig. 1.

To analyze the performance of BIANCA, LPA
and LGA on distinct characterised subsamples,
we examined the degree of overlap between WML
masks provided by the algorithms and manually seg-
mented WML masks. For this purpose, we employed
the same data created in the previous step as valida-
tion data, i.e. the 120 manually segmented scans in
FLAIR space. Since LGA uses T1 modality as base
reference, we also required validation data in TI
space. Therefore, we co-registered the manually seg-
mented WML masks in FLAIR space to T1 space
using FLIRT from FSL for modality co-registration
(FLAIR to T1). Detailed information on the number
of participants in each validation dataset is provided
in Table 1.

Automated WML segmentation algorithms

To address the first aim, we opted for one of the most
widely used and established algorithms in the litera-
ture [27, 32, 39, 40, 52, 53], BIANCA [19]. BIANCA
requires data pre-processing, selection of initial
parameters and to be trained.

The pre-processing steps involved tools from FSL
(http://fsl.fmrib.ox.ac.uk/fsl) [54]. We utilised BET
to produce brain extracted images in FLAIR and T1
modality, FLIRT for modality co-registration (T1
to FLAIR) using linear rigid-body registration (6
degrees), and normalization to the MNI152 standard
template [55].

Regarding the initial parameters, we used T1 and
FLAIR modalities, with FLAIR as the reference base
modality. We followed the options recommended
by [19] to optimise the dice similarity index (DSI)
and false positive ratio. This included setting spatial
weighting (sw) to 1 (default), no patch and select-
ing no border (excluding three voxels close to the
lesion’s edge) for the location of non-lesion training
points. We used a fixed and unbalanced (FU) num-
ber of training points, with 5000 for the number of
lesion points and 25,000 for non-lesion points per
training subject. The total WML volume, and hence
the BIANCA estimation, was obtained by applying
a threshold of 0.9 [19] to the lesion probability map,
which constitutes the output of the algorithm. Further
details can be found in [19].

BIANCA is trained by creating a feature space that
includes both intensity and spatial features from the
lesion and non-lesion voxels determined in the train-
ing data. Feature vectors for both classes, WML and
non-WML, are created for each of the selected num-
ber of training points. Once the ‘training’ vectors
are established in the feature space, classification of
unseen voxels (unseen images) is performed by creat-
ing its own feature vector and measuring the distance
to the 40 nearest training feature vectors (k-nearest
neighbour). Therefore, by using each specific char-
acterised training data (shown in Table 1), BIANCA
generated specific training feature vectors linked
to each relevant factor. This approach allowed us to
assess WML estimation differences when training
data characteristics changed.

To address the second aim, we selected algorithms
that, like BIANCA, are well established and broadly
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used in the community [19, 21, 27, 32, 34, 36-43].
These algorithms include BIANCA itself, the Lesion
Prediction Algorithm (LPA) [23] and the Lesion
Growth Algorithm (LGA) [22].

In this case, BIANCA was trained on participants
with a uniform age distribution ranging from 18 to
87, mixed sex, with and without the presence of car-
diovascular factors, since this characterised dataset
yelled the highest performance in aim 1.

LPA only requires the input modality: FLAIR. It
also presents the option to include another modality
as the base reference image. In this study, we tested
the algorithm with two options, using only FLAIR
modality and a combination of FLAIR +T1, using T1
as base modality. We applied a threshold of 0.5 [23]
to the lesion probability maps.

LGA requires T1 modality as a reference image
along with FLAIR images. An initial threshold
(kappa), user-determined, is needed. In our study,
we selected a kappa value of 0.25 [22] and applied
a threshold of 0.3 [22] to the lesion probability maps
[22, 23].

We applied BIANCA, LPA and LGA to the 13
characterised test datasets (described in Table 2) then
compare their outputs and performance within each
characteristic.

Statistical analysis

For aim 1, to determine whether BIANCA estima-
tions are influenced by the presence of relevant fac-
tors in the training data, we compared the estimated
WML volumes obtained with each training dataset
when the algorithms was applied to the I000BRAINS
cohort and to each characterised subsample depict-
ing different age distribution, stratified by sex, with
and without the presence of cardiovascular factors
(as shown in Table 2). Specifically, we examined
how different characteristics present in the training
data influenced the results obtained by BIANCA. We
conducted these comparisons using mixed ANOVAs
with Bonferroni post hoc tests. We applied this test to
address the participants who are related to each other
(between-subjects factor) and the variance introduced
by the different training datasets (within-subjects
factor).

We also analysed the performance in each case, to
identify which composition of training data yielded
the highest performance. We measured the degree of
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overlap between WML masks provided by BIANCA
and WML manually segmented masks (see validation
datasets in Table 1). We employed a specific metric
for this purpose, the dice similarity index (DSI). The
DSl is calculated as twice the number of voxels in the
intersection of manual and algorithm masks divided
by the sum of voxels manually segmented and algo-
rithm segmented voxels. This choice aligns with pre-
vious studies, which have identified the DSI as the
most robust indicator of overlap between the manual
mask and the estimated mask [19].

For aim 2, to identify if the presence of specific
factors in the test data leads to (in)accurate delinea-
tion, we analysed the output differences of BIANCA,
LPA and LG, as well as their performance when
applied to individuals exhibiting different age distri-
bution, stratified by sex, with and without the pres-
ence of cardiovascular factors (details of individuals
characteristics are shown in Table 2).

Regarding the output differences, we compared
the outcomes of BIANCA versus LPA when using
FLAIR modality only, versus LPA when using both
T1 and FLAIR modalities, and versus LGA, within
each characterised fest data described in Table 2. For
instance, we considered the test subgroup ‘hyperten-
sion’ as explanatory factor, and WML volume esti-
mations as dependent variable (within-subjects). We
analysed these differences using mixed between-
within participants ANOVAs with Bonferroni post
hoc tests.

Regarding the performance, we measured the
degree of overlap between WML masks provided
by the different algorithms and manually segmented
WML masks (see validation datasets in Table 1)
employing the DSI.

Results
Aim 1: influence of training data

First, we focused on the question on how different
characteristics of training datasets would influence
the WML estimations within one such algorithm,
BIANCA. When exploring BIANCA’s output dif-
ferences a specific pattern of significant differ-
ences emerged for all test datasets, we found that
different training datasets based on different age
distribution (p <0.001), stratified by sex (p <0.01),
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Pattern of differences in WML estimations depending on the training dataset
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Fig. 2 Training data characteristics influences BIANCA’s
WML estimations. Violin plots present the distribution of
the total estimated WML volume as median values and quar-
tiles when BIANCA is trained on 15 different training data

and with and without the presence of hypertensive
individuals (p <0.001) yielded different results as
shown in Fig. 2.

Notably, WML volumes exhibited significant
increases when BIANCA was trained on older
participants, 1i.e., specifically on participants
between 47 and 67 years old compared to partici-
pants between 18 and 47 years old (p <0.001), see
Fig. 2. Additionally, higher WML volumes were
also observed when the algorithm was trained on
females with cardiovascular risk factors, compared
to training on males and females without cardio-
vascular factors (p<0.01). Furthermore, higher
WML volumes were observed when the algorithm
was trained on the ‘hypertension’ training dataset
in comparison to when trained on ‘healthy’ par-
ticipants (‘control hypertension’ training dataset
(»<0.001)).

When identifying peak performances, we spot-
ted that the highest similarities between output
mask and manual segmentation (DSI>0.7) was
achieved when the training dataset had a uniform
age distribution ranging from 18 to 87, mixed sex,
individuals with and without the presence of car-
diovascular factors, i.e. when BIANCA was trained
on ‘TD120’ (see Fig. 2).
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o7 o \ \O\ q’{\ z{\
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S
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sets (x-axis) and applied to the whole 1000BRAINS cohort.
*%0.001 <p<0.01; ***: 0.0001 <p<0.001. Violin plots were
made with seaborn library

Aim 2: impact of relevant factors on test data

Secondly, we focused on the question how differ-
ent characteristics of fest datasets would impact on
WML estimations of three algorithms BIANCA, LPA
and LGA. We examined the output and performance
of the algorithms in each characterised test dataset
described in Table 2.

Therefore, we first compared the estimated WML
volumes between BIANCA vs. LPA using only
FLAIR vs. LPA using T1 and FLAIR vs. LGA.

BIANCA vs. LPA vs. LGA—impact of ‘age’ on test
data We found a significant difference (p<0.001)
between the output of BIANCA and that of LPA
for participants under 67 years of age, i.e. for test
datasets ‘agel8’, ‘age37’, ‘age47’ and ‘ageS7’ (see
Fig. 3A). Specifically, LPA consistently provided
lower WML estimations when compared to BIAN-
CA’s output which was evident in the WML distri-
butions in Fig. 3A. When comparing output masks
with the manual segmentations, this discrepancy was
also reflected in high similarities for BIANCA (mean
DSI>0.7) compared to lower similarities for LPA
with only FLAIR modality (mean DSI<0.4), and to
LPA with FLAIR+T1 modality (mean DSI<0.4);

@ Springer



1230

GeroScience (2025) 47:1221-1237

A Differences in WML estimations depending on the algorithm
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Fig. 3 Impact of test data characteristics on outputs and per-
formance of BIANCA, LPA and LGA. Presented are A mean
WML estimations (ml) for each test datasets (x-axis) depend-
ing on the four algorithms with standard deviations. B Perfor-
mance of each algorithm is measured by the DSI indicating the
similarity between the algorithms WML segmentation mask

see Fig. 3B. Furthermore, we observed that LGA’s
output showed significantly (p <0.001) lower WML
estimations than BIANCA’s for participants under
67 years of age (Fig. 3A). This is consistent with
low similarities observed for LGA when applied to
participants under 67 years of age (mean DSI<O0.3,
Fig. 3B). BIANCA, however, showed highest simi-
larities (mean DSI>0.7) when applied to all age dis-
tributions (Fig. 3B).

BIANCA vs. LPA vs. LGA—impact of ‘sex’ on
test data Results show significant differences
(»<0.001) between the outputs of BIANCA and
LPA when using only the FLAIR modality. Spe-
cifically, in older males without cardiovascular fac-
tors (see Fig. 3A), BIANCA yielded higher WML
estimation volumes compared to LPA. At the same
time, higher DSI (>0.7), i.e. a higher similarity, is
observed for BIANCA'’s output compared to LPA’s
(FLAIR) output (DSI<0.6, Fig. 3B). Furthermore,
significant differences (p <0.001) between the out-
puts of BIANCA, LPA and LGA were observed for
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and the manual segmentation mask, where violin plots illus-
trate the distribution of DSI with mean values and standard
deviations. Abbreviations: LPA(FLAIR)=LPA using only the
FLAIR modality, LPA (FLAIR+T1)=LPA using the FLAIR
and T1 modalities; ***0.0001 <p<0.001. Violin plots and
point plots were made with seaborn library

older females without cardiovascular factors: notably,
BIANCA shows higher WML volumes compared to
all other algorithms (see Fig. 3A). Again, this is in
line with higher observed performance for BIANCA
(mean DSI>0.7) compared to all other algorithms
(mean DSI<0.6, see Fig. 3B). No significant differ-
ences were observed between LGA and LPA’s output
when they were applied to older males and females
with and without cardiovascular factors (Fig. 3A). For
all sex-stratified test data, BIANCA showed the high-
est performance (mean DSI> 0.7, see Fig. 3B).

BIANCA vs. LPA vs. LGA—impact of ‘cardio-
vascular factors’ on test data In contrast to our
previous findings, we did not observe any signifi-
cant difference between the algorithms’ output when
they are applied to older individuals with high blood
glucose levels, diabetes, high blood pressure levels,
hypertension and healthy controls, i.e. for test data-
sets ‘diabetes’, ‘control diabetes’, ‘hypertension’ and
‘control hypertension’ (see Fig. 3A). LPA(FLAIR),
LPA(FLAIR+T1) and LGA showed a good
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performance (mean DSI, 0.55-0.69) for older indi-
viduals with high blood glucose levels, diabetes, high
blood pressure levels or hypertension, and BIANCA
outperformed all of these with a mean DSI>0.7; see
Fig. 3B.

Additional step: repeating aim 1 on characterised
subsamples

When repeating the analysis of aim 1 on the sub-
samples created on aim 2, the same pattern of dif-
ferences found in aim 1 was found in almost all zest
datasets. There was a slight difference in the pattern
found in participants between 57 and 87 years old.
Here, higher WML volumes were observed when the
algorithm was trained on females with cardiovascu-
lar risk factors, compared to training only on males
without cardiovascular factors (p <0.01). Please refer
to the supplement material (Fig. s1E and D) to see
this slight variation in the pattern of WML estimated
differences. When looking at each subgroup individu-
ally (Fig. s1-s3), we noticed that the highest similari-
ties between output mask and manual segmentation
(DSI1>0.7) was achieved when the training dataset
had a uniform age distribution ranging from 18 to 87,
mixed sex, individuals with and without the presence
of cardiovascular factors, i.e. when BIANCA was
trained on ‘TD120’, replicating the same result found
in aim 1 (Fig. s1-s3). We also observed that high sim-
ilarities were achieved when fest datasets presented
similarity with the fraining datasets, e.g. regarding
age or (non-)presence of risk factors. This was most
observable in the age 37 fest subgroup, where WML
estimations where most accurate when using train-
ing data from participants under 37 years of age. For
most other groups, the range was wider; e.g. for the
youngest age decade (‘age 18’ subgroup), the most
accurate WML estimations were achieved when using
a training dataset comprising participants under 47
years old without cardiovascular risk factors. Please
refer to the supplement material (Fig. s1-s3) for a
detailed depiction of all DSI results.

Discussion
In this study, we aimed to investigate the effect of

different relevant influencing factors on automatic
WML estimations in a large sample of normal aging

participants. We selected three freely available and
widely used algorithms, BIANCA, LPA and LGA,
and compared their outputs and performance under
different conditions.

The first aim of this study was to determine
whether automatic WML estimations are influenced
by the presence of relevant factors in the train-
ing dataset. Specifically, we found that (i) training
datasets induce bias when they consist of a narrow
selection of characteristics, i.e. including only older
participants, females with cardiovascular factors or
only hypertensive individuals, as shown in our anal-
yses comparing 15 different training datasets within
BIANCA. Trained on these datasets, BIANCA over-
estimated WML volumes compared to when it was
trained on younger participants, opposite sex and con-
trol individuals. Moreover, BIANCA’s best perfor-
mance was achieved when trained on 120 individuals
from all ages, both sexes and including individuals
without the presence of cardiovascular factors.

The second aim was to compare WML estimations
and performance of BIANCA, LPA and LGA when
applied to fest subgroups with specific risk factor pro-
files. Here, (ii)) WML estimations of LPA and LGA
differ significantly from BIANCA; they underesti-
mated the total WML volumes, e.g. in subjects under
67 years of age or older females without cardiovas-
cular risk factors. (iii) LPA and LGA showed a poor
performance when applied to subjects under 67 years
of age without cardiovascular risk factors (DSI1<0.4).
BIANCA showed a robust and the highest perfor-
mance (DSI>0.7) across all subgroups with specific
risk factor profiles.

The necessity for a reliable automated segmenta-
tion is evident by the cumulus works dedicated to
standardize the evaluation of WML load [18, 27, 56].
Despite the number of proposed methods [19, 22, 23,
25, 37, 57-69] and the attempts of improving them,
an outstanding algorithm has not been recognized
yet [56, 70]. Caligiuri et al. (2015) [18] compared 34
different WML automatic methods, including super-
vised learning algorithms, unsupervised algorithms
and automated and semi-automated algorithms. They
established that many of these algorithms are not
freely available, and they have been validated mostly
with small samples and are study and/or protocol
specific. In our study, we choose BIANCA, LPA and
LGA because they are freely available, they are com-
monly used in the community [21, 27, 32, 34, 3643,
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71], they are fully automated and the major differ-
ence regarding their use is that LPA and LGA do not
require training data; meanwhile, BIANCA does. We
aimed at providing a more differentiated perspective
on the usage of such algorithms beyond the ques-
tion of one optimal algorithm, but focusing on the
relevance of potential sources of bias for algorithm
performance and outcome when used in large popula-
tion-based samples.

Regarding the first aim of the present study, we
showed a discernible pattern of significant differences
in BIANCA’s WML volume estimations emerged
based on different training datasets related to age, sex,
and hypertension. Notably, significantly higher WML
loads were observed when BIANCA was trained on
older individuals (Fig. 2), compared to when it was
trained on younger individuals. This observation
could indicate that the age composition of the train-
ing dataset plays an important role in the accuracy of
WML volume estimations. Specifically, relying solely
on older adults or exclusively on younger adults
within a cohort could introduce bias, potentially lead-
ing to either an overestimation or underestimation
of WML volumes. This emphasizes the importance
of constructing a well-balanced training dataset that
encompasses a diverse representation of ages to avoid
bias WML estimations.

Moreover, elevated WML volumes were noted
when the algorithm was trained on females with car-
diovascular risk factors (Fig. 2). Similarly, higher
WML estimations were observed when the train-
ing sample consisted of individuals with high blood
pressure or hypertension. Previous studies indicate
a higher WML load in participants with hyperten-
sion [29, 53]. This together with our results suggests
that including only participants with these factors in
the training data has the potential to markedly alter
the estimations of WML volume estimations. These
findings highlight the substantial influence of train-
ing data characteristics on WML volume extraction,
emphasizing the need for a comprehensive train-
ing data where male and female participants with
and without cardiovascular factors are needed in
order to avoid bias in the WML volume estimations.
Accentuating this point, the highest performance
(DSI, 0.70-0.78) was observed when BIANCA was
trained on a group of individuals with uniform age
distribution ranging from 18 to 87, mixed sex, with
and without the presence of cardiovascular factors,
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representing a balanced and proportioned charac-
terization of the influencing factors present in the
1000BRAINS cohort.

Regarding the second aim, we could show that
LPA and LGA underestimated the total WML vol-
umes in participants under 67 years of age and in
older females without cardiovascular risk factors.
This aligns with the low performance (DSI<0.4) of
these algorithms on individuals under 67 years old.
To evaluate performance as moderate or good, a DSI
of > 0.6 is usually expected [27]. Heinen et al. (2019)
[26] explored the performance of LGA and LPA in
a study involving 60 subjects with vascular cogni-
tive impairment. Their findings indicated a relatively
lower performance for LGA when compared to LPA.
Our findings from a large group of normal aging par-
ticipants also indicate a lower performance for LGA
compared to LPA, thus expanding previous evidence
from clinical conditions to the normally aging popu-
lation. This consistency across studies emphasizes
the importance of considering the algorithm’s per-
formance characteristics in specific demographic and
clinical contexts.

BIANCA has been tested, validated and applied
in many different cohorts [27, 32, 39, 53]. A recent
study by Hotz et al. (2022) [32] explored WML esti-
mation in 232 healthy subjects aged 64-87, employ-
ing three different algorithms, including BIANCA.
They reported a mean DSI of 0.6 using a random
training dataset from the cohort comprising 16
FLAIR images with manually segmented lesions.
In our study, we tested 15 combinations of relevant
factors in the training dataset, identifying the highest
performance (mean DSI>(0.7) when the training data
characteristics were similar to those of the cohort.

LPA has been trained on 53 multiple sclero-
sis patients with severe lesion patterns, with a total
WML volumes higher than 10 mL, reflecting a com-
parably high amount of WML load. Similar to LPA,
LGA was originally developed for lesion segmenta-
tion in patients with multiple sclerosis [22]. How-
ever, it has also been used for WML segmentation
in, e.g. cognitively unimpaired older adults [38],
individuals with dementia and cognitive impairment
[27] and individuals with diabetes [21]. It has been
established that methods trained on multiple sclero-
sis patients perform relatively well when applied to
geriatric patients [57]. This aligns to the results we
observed, where LPA’s performance improves for
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participants > 60 years of age with cardiovascular risk
factors (who also present high WML burden). Yet, the
performance of the algorithm is not optimal for par-
ticipants under 67 years of age without cardiovascu-
lar risk factors (DSC <0.4). These changes in LPA’s
performance are comparable with the drop in perfor-
mance for LGA. With LPA being pre-trained on mul-
tiple sclerosis patients with high amounts of WML,
accurate delineations of WML in normally aging par-
ticipants might be limited, as boundaries of multiple
sclerosis lesions present with more clearly delineable
edges as compared to age-related WML [18].

Our study thus would allow to conclude that LPA
and LGA are suboptimal for automatic segmentation
of WML for participants under 67 years of age with-
out cardiovascular risk factors. However, they can
be a very good and fast choice to estimate WML on
participants > 60 years of age with cardiovascular risk
factors, particularly LPA since it presented higher
performance than LGA and uses the pretrained algo-
rithm as implemented in the lesion segmentation tool-
box (LST).

Limitations

While we compared three widely used algorithms
(BIANCA, LPA and LGA), there are other segmen-
tation methods available in the literature. Our study
focused on these three algorithms due to their com-
mon usage and availability. Different algorithms
may yield different results, and future research could
explore additional methods. The performance of
machine learning algorithms, like BIANCA, can be
highly dependent on the quality and representative-
ness of the training dataset. While we attempted to
create a diverse training dataset based on the influenc-
ing factors, there may still be factors not considered
in our study that could affect segmentation accuracy.
In this study, the manual delineations were performed
by a trained physicist specialized in medical image
analysis supervised by a physician who selectively
checked delineations; i.e. there was only one inde-
pendent rater; therefore, there were no consensus
procedure and no interrater reliability measure. The
findings of this study are based on a specific cohort
of normal aging individuals and may not fully gen-
eralize to other populations, such as clinical patients
or individuals with neurodegenerative diseases. The
impact of influencing factors on WML estimation

may differ in different populations. Lastly, the data
used is cross-sectional, and it may be of high inter-
est to study the intra-subject variability of WML seg-
mentation in relation to these influencing factors in a
longitudinal dataset.

Conclusion

Our study provides insights to minimizing sources of
bias that may influence the white matter lesion esti-
mations when using three freely available segmenta-
tion algorithms: LGA, LPA and BIANCA.

Based on our results, we see the importance of
considering a comprehensive characterization of the
sample dataset with special importance in lifestyle
and influencing factors to the segmentation meth-
odology to avoid sources of bias in the estimations
of WMLs. Specifically, we encourage the users of
BIANCA to prepare training datasets that embed, in
a smaller scale, a representation of the distribution in
terms of age, sex and hypertension. LGA showed the
lowest performance compared to LPA and BIANCA.
LPA proved to be a suitable and fast alternative for
participants with certain characteristics, e.g. above
60 years of age with cardiovascular risk factors.
BIANCA presented the highest performance across
all the subgroups compared to LPA and LGA. How-
ever, it is important to note that BIANCA’s prepara-
tion of the training dataset takes time and expertise.

We suggest to be aware of the changes in WML
estimations and accuracy when applying the LPA or
LGA to subjects under 60 years of age.

In the future, it would be of interest to investigate
how other influencing factors such as obesity, cho-
lesterol levels, physical activity, smoking or genet-
ics, e.g. APOE status, could impact automatic WML
estimations.
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