001037319 001__ 1037319
001037319 005__ 20250203103215.0
001037319 037__ $$aFZJ-2025-00642
001037319 041__ $$aEnglish
001037319 1001_ $$0P:(DE-Juel1)188372$$aWolter, Julia Lucia$$b0$$eCorresponding author
001037319 1112_ $$a2024 WPI Symposium$$cGöttingen$$d2024-10-14 - 2024-10-16$$wGermany
001037319 245__ $$aFabrication and Joining of Proton Conducting Cell Assemblies for Dehydrogenation of Alkanes
001037319 260__ $$c2024
001037319 3367_ $$033$$2EndNote$$aConference Paper
001037319 3367_ $$2DataCite$$aOther
001037319 3367_ $$2BibTeX$$aINPROCEEDINGS
001037319 3367_ $$2DRIVER$$aconferenceObject
001037319 3367_ $$2ORCID$$aLECTURE_SPEECH
001037319 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1737526907_18906$$xInvited
001037319 520__ $$aAbstract: Satisfyingthe ever increasing global demand for energy and material goods whileachieving the ambitious CO 2 emissions targets of the EU for 2030 on climate changerequires the utilization of renewable resources e.g., wind, solar) in the fuels andchemical industries. The project AMAZING (Additive Manufacturing for Zero emissionInnovative Green Chemistry) directly addresses this by replacing large scale hightemperature cracking processes e.g., steam cracking) with el ectrically driven thermocatalytic activation of alkanes to produce chemical building blocks allowing significantreduction in the CO 2 emissions associated with energy intensive cracking reactions.Thecore of the cell assembly is a ceramic membrane made from mixed proton andelectron conducting La 6 x WO 12 δ To increase the electronic conductivity of the materialMo as doping element is used to form La 6 x W 0.8 Mo 0.2 O 12 δ (LWO Mo20). The powder isin house produced and the particle size, specific surface area and chemical compositionis determined before the ceramic layers are formed. Therefore, three differentfabrication techniques are used in this work. The first one is sequential tape casting andlamination to fabricate an asymmetric structure of a dense m embrane layer (thickness25 µm) and a porous support (thickness 500 µm). Furthermore 3D printingtechniques are implemented to achieve defined support structures. Firstly, acombination of tape casting and material extrusion ( is introduced, where thesupport structure is printed directly on a tape cast membrane layer. This techniqueallows a good membrane quality but suffers during the co firing of the final layers.Secondly, a pure 3D printing approach is introduced, which utilizes 3D screen print ing.With this technique both, membrane and support layer, are formed subsequently in onemachine allowing good membrane quality and precise support structures.Afterco firing all membrane components undergo a quality testing procedure, whichincludes He leakage determination and white light topography. The next step is thejoining of the ceramic membrane into a metal frame to form a membrane module, whichcan easily be built in a test reactor and quickly exchanged for multiple tests. The joiningprocedure takes place in a furnace at 850 °C applying load on the sealing area. Glasssealant is used to connect the ceramic and metal part. After joining, another He leakagetest is performed to assure the joining quality. With this procedure large amounts oflab scale membrane modules can be fabricated for further performance tests.
001037319 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001037319 536__ $$0G:(BMWi)03EN2052A$$aVerbundvorhaben: AMAZING - Additive Manufacturing for Zero-emission Innovative Green Chemistry Teilvorhaben: Entwicklung von Gastrennmembranen (03EN2052A)$$c03EN2052A$$x1
001037319 7001_ $$0P:(DE-Juel1)144923$$aDeibert, Wendelin$$b1
001037319 7001_ $$0P:(DE-HGF)0$$aWeber, S.$$b2
001037319 7001_ $$0P:(DE-HGF)0$$aPelka, A.$$b3
001037319 7001_ $$0P:(DE-Juel1)133667$$aGross-Barsnick, Sonja-Michaela$$b4$$ufzj
001037319 7001_ $$0P:(DE-HGF)0$$aNikolay, D.$$b5
001037319 7001_ $$0P:(DE-HGF)0$$aIngale, P.$$b6
001037319 7001_ $$0P:(DE-HGF)0$$aSchunk, S.$$b7
001037319 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b8$$ufzj
001037319 909CO $$ooai:juser.fz-juelich.de:1037319$$pVDB
001037319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188372$$aForschungszentrum Jülich$$b0$$kFZJ
001037319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b1$$kFZJ
001037319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133667$$aForschungszentrum Jülich$$b4$$kFZJ
001037319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b8$$kFZJ
001037319 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001037319 9141_ $$y2024
001037319 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001037319 980__ $$aconf
001037319 980__ $$aVDB
001037319 980__ $$aI:(DE-Juel1)IMD-2-20101013
001037319 980__ $$aUNRESTRICTED