001037333 001__ 1037333
001037333 005__ 20250203124506.0
001037333 0247_ $$2doi$$a10.1109/TSG.2024.3424530
001037333 0247_ $$2WOS$$aWOS:001392825000034
001037333 037__ $$aFZJ-2025-00651
001037333 082__ $$a620
001037333 1001_ $$0P:(DE-Juel1)190571$$aLi, Chuan$$b0$$eCorresponding author$$ufzj
001037333 245__ $$aEV Charging Station Placement Considering V2G and Human Factors in Multi-Energy Systems
001037333 260__ $$aNew York, NY$$bIEEE$$c2025
001037333 3367_ $$2DRIVER$$aarticle
001037333 3367_ $$2DataCite$$aOutput Types/Journal article
001037333 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737364205_852
001037333 3367_ $$2BibTeX$$aARTICLE
001037333 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037333 3367_ $$00$$2EndNote$$aJournal Article
001037333 520__ $$aThis paper proposes a new planning framework to determine the optimal location, capacity, and types of EV charging stations (EVCSs) in multi-energy systems (MESs). We propose a two-stage stochastic programming approach -with scenario-based algorithms- that explicitly considers vehicle-to-grid (V2G) peculiarities (four-quadrant operation and stochastic human factors influence: V2G willingness, walking distance, and charging patterns). Considering those factors together with MES uncertainties -RES generation, load demands, and electricity price- enables a comprehensive study of V2G and MES impact on EVCS planning. The proposed approach is applied to both a purely electric distribution network (EDN) and an MES to analyze the interplay of EVCSs in different energy domains, in consideration of different V2G contracts. The obtained results underline that the sole consideration of the EDN can lead to non-optimal results, while the more comprehensive analysis leads to optimal planning of all energy resources and cost savings. Finally, we analyse how each considered factor individually impacts EVCSs planning.
001037333 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001037333 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001037333 536__ $$0G:(DE-Juel1)BMBF-03SF0628$$aLLEC::VxG - Integration von "Vehicle-to-grid" (BMBF-03SF0628)$$cBMBF-03SF0628$$x2
001037333 7001_ $$0P:(DE-Juel1)186779$$aCarta, Daniele$$b1$$ufzj
001037333 7001_ $$0P:(DE-Juel1)179029$$aBenigni, Andrea$$b2$$ufzj
001037333 773__ $$0PERI:(DE-600)2560004-7$$a10.1109/TSG.2024.3424530$$n1$$p529-540$$tIEEE transactions on smart grid$$v16$$x1949-3053$$y2025
001037333 8564_ $$uhttps://juser.fz-juelich.de/record/1037333/files/EV_Charging_Station_Placement_Considering_V2G_and_Human_Factors_in_Multi-Energy_Systems.pdf
001037333 8564_ $$uhttps://juser.fz-juelich.de/record/1037333/files/APC600556671.pdf$$yRestricted
001037333 8767_ $$8APC600556671$$92024-07-23$$a1200205911$$d2024-08-06$$eColour charges$$jZahlung erfolgt$$z3150 USD Page + Colour
001037333 909CO $$ooai:juser.fz-juelich.de:1037333$$popenCost$$pOpenAPC$$pVDB
001037333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190571$$aForschungszentrum Jülich$$b0$$kFZJ
001037333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186779$$aForschungszentrum Jülich$$b1$$kFZJ
001037333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179029$$aForschungszentrum Jülich$$b2$$kFZJ
001037333 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001037333 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001037333 9141_ $$y2025
001037333 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001037333 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001037333 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07
001037333 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001037333 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001037333 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001037333 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T SMART GRID : 2022$$d2025-01-07
001037333 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001037333 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T SMART GRID : 2022$$d2025-01-07
001037333 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001037333 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001037333 920__ $$lno
001037333 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001037333 980__ $$ajournal
001037333 980__ $$aVDB
001037333 980__ $$aI:(DE-Juel1)ICE-1-20170217
001037333 980__ $$aUNRESTRICTED
001037333 980__ $$aAPC