001     1037333
005     20250203124506.0
024 7 _ |a 10.1109/TSG.2024.3424530
|2 doi
024 7 _ |a WOS:001392825000034
|2 WOS
037 _ _ |a FZJ-2025-00651
082 _ _ |a 620
100 1 _ |a Li, Chuan
|0 P:(DE-Juel1)190571
|b 0
|e Corresponding author
|u fzj
245 _ _ |a EV Charging Station Placement Considering V2G and Human Factors in Multi-Energy Systems
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737364205_852
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper proposes a new planning framework to determine the optimal location, capacity, and types of EV charging stations (EVCSs) in multi-energy systems (MESs). We propose a two-stage stochastic programming approach -with scenario-based algorithms- that explicitly considers vehicle-to-grid (V2G) peculiarities (four-quadrant operation and stochastic human factors influence: V2G willingness, walking distance, and charging patterns). Considering those factors together with MES uncertainties -RES generation, load demands, and electricity price- enables a comprehensive study of V2G and MES impact on EVCS planning. The proposed approach is applied to both a purely electric distribution network (EDN) and an MES to analyze the interplay of EVCSs in different energy domains, in consideration of different V2G contracts. The obtained results underline that the sole consideration of the EDN can lead to non-optimal results, while the more comprehensive analysis leads to optimal planning of all energy resources and cost savings. Finally, we analyse how each considered factor individually impacts EVCSs planning.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 1
536 _ _ |a LLEC::VxG - Integration von "Vehicle-to-grid" (BMBF-03SF0628)
|0 G:(DE-Juel1)BMBF-03SF0628
|c BMBF-03SF0628
|x 2
700 1 _ |a Carta, Daniele
|0 P:(DE-Juel1)186779
|b 1
|u fzj
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 2
|u fzj
773 _ _ |a 10.1109/TSG.2024.3424530
|0 PERI:(DE-600)2560004-7
|n 1
|p 529-540
|t IEEE transactions on smart grid
|v 16
|y 2025
|x 1949-3053
856 4 _ |u https://juser.fz-juelich.de/record/1037333/files/EV_Charging_Station_Placement_Considering_V2G_and_Human_Factors_in_Multi-Energy_Systems.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1037333/files/APC600556671.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1037333
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190571
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186779
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T SMART GRID : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T SMART GRID : 2022
|d 2025-01-07
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21