001037407 001__ 1037407
001037407 005__ 20250804115239.0
001037407 0247_ $$2doi$$a10.1002/elsa.202400036
001037407 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00711
001037407 0247_ $$2WOS$$aWOS:001379927400001
001037407 037__ $$aFZJ-2025-00711
001037407 082__ $$a540
001037407 1001_ $$0P:(DE-HGF)0$$aWilke, Vincent$$b0$$eFirst author
001037407 245__ $$aNovel Atmospherically Plasma Sprayed Micro Porous Layer for Anion Exchange Membrane Water Electrolysis Operating With Supporting Electrolyte
001037407 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co KGaA$$c2025
001037407 3367_ $$2DRIVER$$aarticle
001037407 3367_ $$2DataCite$$aOutput Types/Journal article
001037407 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750835922_30248
001037407 3367_ $$2BibTeX$$aARTICLE
001037407 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037407 3367_ $$00$$2EndNote$$aJournal Article
001037407 520__ $$aAnion exchange membrane water electrolysis (AEMWE) is one of the most promising candidates for green hydrogen productionneeded for the de-fossilization of the global economy. As AEMWE can operate at high efficiency without expensive PlatinumGroup Metal (PGM) catalysts or titanium cell components, required in state-of-the-art proton exchange membrane electrolysis(PEMWE), AEMWE has the potential to become a cheaper alternative in large-scale production of green hydrogen. In AEMWE,the porous transport layer and/or micro porous layer (PTL/MPL) has to balance several important tasks. It is responsible formanaging transport of electrolyte and/or liquid water to the catalyst layers (CLs), transport of evolving gas bubbles away from theCLs and establishing thermal and electrical connection between the CLs and bipolar plates (BPPs). Furthermore, especially incase the CL is directly deposited onto the MPL, forming a catalyst-coated substrate (CCS), the MPL surface properties significantlyimpact CL stability. Thus, the MPL is one of the key performance-defining components in AEMWE. In this study, we employed theflexible and easily upscaled technique of atmospheric plasma spraying (APS) to deposit spherical nickel coated graphite directly ona low-cost mesh PTL. Followed by oxidative carbon removal, a nickel-based MPL with superior structural parameters comparedto a state-of-art nickel felt MPL was produced. Due to a higher activity of the nickel APS-MPL itself, as well as improved catalystutilization, a reduction in cell voltage of 63 mV at 2 A cm−2 was achieved in an AEMWE operating with 1 M KOH electrolyte. Thisimprovement was enabled by the high internal surface area and the unique pore structure of the APS-MPL with a broad pore sizedistribution as well as the finely structured surface providing a large contacting area to the CLs.
001037407 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001037407 536__ $$0G:(DE-Juel1)BMBF-03HY130F$$aAEM-Direkt - H2Giga_NG5_AEM-Direkt - Direktbeschichtung von anionenleitenden Membranen für großskalige Wasserelektrolyseure (BMBF-03HY130F)$$cBMBF-03HY130F$$x1
001037407 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037407 7001_ $$0P:(DE-HGF)0$$aRivera, Marco$$b1
001037407 7001_ $$0P:(DE-HGF)0$$aMorawietz, Tobias$$b2
001037407 7001_ $$0P:(DE-HGF)0$$aSata, Noriko$$b3
001037407 7001_ $$0P:(DE-HGF)0$$aMues, Lukas$$b4
001037407 7001_ $$0P:(DE-Juel1)179280$$aHegelheimer, Manuel$$b5
001037407 7001_ $$0P:(DE-HGF)0$$aMaljusch, Artjom$$b6
001037407 7001_ $$0P:(DE-HGF)0$$aBorowski, Patrick$$b7
001037407 7001_ $$0P:(DE-HGF)0$$aSchmid, Günter$$b8
001037407 7001_ $$0P:(DE-HGF)0$$aThum, Chen Yie$$b9
001037407 7001_ $$0P:(DE-HGF)0$$aKlingenhof, Malte$$b10
001037407 7001_ $$0P:(DE-HGF)0$$aStrasser, Peter$$b11
001037407 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b12
001037407 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b13
001037407 7001_ $$0P:(DE-Juel1)184377$$aPoc, Jean-Pierre$$b14
001037407 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b15
001037407 7001_ $$0P:(DE-HGF)0$$aGago, Aldo Saul$$b16$$eCorresponding author
001037407 7001_ $$0P:(DE-HGF)0$$aFriedrich, Kaspar Andreas$$b17
001037407 773__ $$0PERI:(DE-600)2984616-X$$a10.1002/elsa.202400036$$gp. e202400036$$n3$$pe202400036$$tElectrochemical science advances$$v5$$x2698-5977$$y2025
001037407 8564_ $$uhttps://juser.fz-juelich.de/record/1037407/files/Electrochemical%20Science%20Adv%20-%202024%20-%20Wilke%20-%20Novel%20Atmospherically%20Plasma%20Sprayed%20Micro%20Porous%20Layer%20for%20Anion%20Exchange.pdf$$yOpenAccess
001037407 909CO $$ooai:juser.fz-juelich.de:1037407$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany$$b0
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany$$b1
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany$$b2
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany$$b3
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Oldenburg, Germany$$b4
001037407 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179280$$aForschungszentrum Jülich$$b5$$kFZJ
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Evonik Operations GmbH, Paul-Baumann-Straße 1, Marl, Germany$$b6
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Evonik Operations GmbH, Paul-Baumann-Straße 1, Marl, Germany$$b7
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Siemens Energy Global GmbH & Co. KG, Erlangen, Germany$$b8
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemistry, Chemical Engineering Division, Technical University Berlin (TUB), Berlin, Germany$$b9
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemistry, Chemical Engineering Division, Technical University Berlin (TUB), Berlin, Germany$$b10
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemistry, Chemical Engineering Division, Technical University Berlin (TUB), Berlin, Germany$$b11
001037407 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b12$$kFZJ
001037407 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b13$$kFZJ
001037407 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184377$$aForschungszentrum Jülich$$b14$$kFZJ
001037407 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)184377$$aRWTH Aachen$$b14$$kRWTH
001037407 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b15$$kFZJ
001037407 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b15$$kRWTH
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany$$b16
001037407 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany$$b17
001037407 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001037407 9141_ $$y2025
001037407 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001037407 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001037407 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001037407 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
001037407 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:09:35Z
001037407 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:09:35Z
001037407 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-12
001037407 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001037407 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-12
001037407 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037407 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001037407 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-12
001037407 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001037407 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001037407 920__ $$lyes
001037407 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001037407 980__ $$ajournal
001037407 980__ $$aVDB
001037407 980__ $$aUNRESTRICTED
001037407 980__ $$aI:(DE-Juel1)IET-1-20110218
001037407 9801_ $$aFullTexts