| Home > Publications database > Novel Atmospherically Plasma Sprayed Micro Porous Layer for Anion Exchange Membrane Water Electrolysis Operating With Supporting Electrolyte > print |
| 001 | 1037407 | ||
| 005 | 20250804115239.0 | ||
| 024 | 7 | _ | |a 10.1002/elsa.202400036 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-00711 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001379927400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2025-00711 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Wilke, Vincent |0 P:(DE-HGF)0 |b 0 |e First author |
| 245 | _ | _ | |a Novel Atmospherically Plasma Sprayed Micro Porous Layer for Anion Exchange Membrane Water Electrolysis Operating With Supporting Electrolyte |
| 260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH Verlag GmbH & Co KGaA |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1750835922_30248 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Anion exchange membrane water electrolysis (AEMWE) is one of the most promising candidates for green hydrogen productionneeded for the de-fossilization of the global economy. As AEMWE can operate at high efficiency without expensive PlatinumGroup Metal (PGM) catalysts or titanium cell components, required in state-of-the-art proton exchange membrane electrolysis(PEMWE), AEMWE has the potential to become a cheaper alternative in large-scale production of green hydrogen. In AEMWE,the porous transport layer and/or micro porous layer (PTL/MPL) has to balance several important tasks. It is responsible formanaging transport of electrolyte and/or liquid water to the catalyst layers (CLs), transport of evolving gas bubbles away from theCLs and establishing thermal and electrical connection between the CLs and bipolar plates (BPPs). Furthermore, especially incase the CL is directly deposited onto the MPL, forming a catalyst-coated substrate (CCS), the MPL surface properties significantlyimpact CL stability. Thus, the MPL is one of the key performance-defining components in AEMWE. In this study, we employed theflexible and easily upscaled technique of atmospheric plasma spraying (APS) to deposit spherical nickel coated graphite directly ona low-cost mesh PTL. Followed by oxidative carbon removal, a nickel-based MPL with superior structural parameters comparedto a state-of-art nickel felt MPL was produced. Due to a higher activity of the nickel APS-MPL itself, as well as improved catalystutilization, a reduction in cell voltage of 63 mV at 2 A cm−2 was achieved in an AEMWE operating with 1 M KOH electrolyte. Thisimprovement was enabled by the high internal surface area and the unique pore structure of the APS-MPL with a broad pore sizedistribution as well as the finely structured surface providing a large contacting area to the CLs. |
| 536 | _ | _ | |a 1231 - Electrochemistry for Hydrogen (POF4-123) |0 G:(DE-HGF)POF4-1231 |c POF4-123 |f POF IV |x 0 |
| 536 | _ | _ | |a AEM-Direkt - H2Giga_NG5_AEM-Direkt - Direktbeschichtung von anionenleitenden Membranen für großskalige Wasserelektrolyseure (BMBF-03HY130F) |0 G:(DE-Juel1)BMBF-03HY130F |c BMBF-03HY130F |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Rivera, Marco |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Morawietz, Tobias |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Sata, Noriko |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Mues, Lukas |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Hegelheimer, Manuel |0 P:(DE-Juel1)179280 |b 5 |
| 700 | 1 | _ | |a Maljusch, Artjom |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Borowski, Patrick |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Schmid, Günter |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Thum, Chen Yie |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Klingenhof, Malte |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Strasser, Peter |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Karl, André |0 P:(DE-Juel1)191359 |b 12 |
| 700 | 1 | _ | |a Basak, Shibabrata |0 P:(DE-Juel1)180432 |b 13 |
| 700 | 1 | _ | |a Poc, Jean-Pierre |0 P:(DE-Juel1)184377 |b 14 |
| 700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 15 |
| 700 | 1 | _ | |a Gago, Aldo Saul |0 P:(DE-HGF)0 |b 16 |e Corresponding author |
| 700 | 1 | _ | |a Friedrich, Kaspar Andreas |0 P:(DE-HGF)0 |b 17 |
| 773 | _ | _ | |a 10.1002/elsa.202400036 |g p. e202400036 |0 PERI:(DE-600)2984616-X |n 3 |p e202400036 |t Electrochemical science advances |v 5 |y 2025 |x 2698-5977 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1037407/files/Electrochemical%20Science%20Adv%20-%202024%20-%20Wilke%20-%20Novel%20Atmospherically%20Plasma%20Sprayed%20Micro%20Porous%20Layer%20for%20Anion%20Exchange.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1037407 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Oldenburg, Germany |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)179280 |
| 910 | 1 | _ | |a Evonik Operations GmbH, Paul-Baumann-Straße 1, Marl, Germany |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Evonik Operations GmbH, Paul-Baumann-Straße 1, Marl, Germany |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Siemens Energy Global GmbH & Co. KG, Erlangen, Germany |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Department of Chemistry, Chemical Engineering Division, Technical University Berlin (TUB), Berlin, Germany |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Department of Chemistry, Chemical Engineering Division, Technical University Berlin (TUB), Berlin, Germany |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Department of Chemistry, Chemical Engineering Division, Technical University Berlin (TUB), Berlin, Germany |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)191359 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)180432 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)184377 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 14 |6 P:(DE-Juel1)184377 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 15 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany |0 I:(DE-HGF)0 |b 16 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany |0 I:(DE-HGF)0 |b 17 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-12 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-12 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-08-08T17:09:35Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-08-08T17:09:35Z |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-12 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-12 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IET-1-20110218 |k IET-1 |l Grundlagen der Elektrochemie |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|