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The Effect of Liquid Saturation Transients on PEM Fuel Cell
Impedance: Inductive Loop and Instability of Catalyst Layer
Operation
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We report a physics—based model for the electrochemical impedance of a PEM fuel cell cathode. The model takes into account the
transient behavior of oxygen and proton transport in the cathode catalyst layer caused by a variation of the liquid saturation with
cell current. Transients of the catalyst layer oxygen diffusivity result in a second capacitive arc in the Nyquist spectrum, while
proton conductivity transients lead to the formation of an inductive loop. In the range of capillary pressures in which the liquid
saturation in the catalyst layer is independent of the capillary pressures, the loop does not form. A stability analysis of a reduced
system of equations reveals that the static limit of inductive loop is unstable with respect to spatial perturbations, implying that the
post-oscillatory steady state is unattainable. Possible scenarios of instability development are discussed.
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Nomenclature pé‘;f Reference oxygen pressure, Pa
. . . PL Liquid water pressure in the CCL, Pa
- Marks dimensionless variables p Reference liquid water pressure, Pa
b ORR Tafel slope, V . Deell Overall pressure,Pa
Cu Double layer capacitance, F cm Oorr ORR rate. A cm ™3
D, Oxygen diffusivity in the GDL, cm?®s On Rate of vaporization, A cm >
Dy Oxygen diffusivity in the dry GDL, cm?s ™" ; Pore radius, pm
D, Oxygen diffusivity in the CCL, cm®s™" R Gas constant, J/(K mol)
Dy Oxygen diffusivity in the dry CCL, cm? s~ RH Relative humidity
D, Water vapor diffusivity in the CCL, cm?*s ™! s CCL liquid saturation
€o The elementary charge, (_:1 So Reference liquid saturation,
F Faraday constant, C mol T Cell temperature, K
i Imaginary unit ¢ Time. s
i Volumetric exchange current density,zA em ™ £ Characteristic time. s
. — —1 * ]
Jy Oxygen molar flux in GDL’ mol cm~s o Vo Molar volume of liquid water, m*mol !
Jy Water vapor molar flux in CCL, mol cm S X, Porosity of CCL
Jr Liquid water molar flux in CCL, molzcml S x Coordinate through cell, m
Jo, Oxygen molar flux in CCL, mol cm s Z Electrochemical impedance, Ohm cm?
Jp Local proton current density, A cm Subscripts:
Jeell Cell current density, A cm™> ) 0 membrane/CCL interface
Jj Local proton current density in CCL, A cm™ 1 CCL/GDL interface
J Characteristic current density, A cm™> b GDL
K; Liquid water permeability, m> h Channel
kpe Parameter determining slope in water retention * Characteristic value
curve, Pa - ) Superscripts:
ks Constant of proton conductivity vs. saturation, 0 Steady state value
—1
Svm . ) e 1 1 Small amplitude perturbation
k. Liquid transport coefficient, mol m~ Pa =" s Greek:
ky, Vaporization coefficient, mol m—> Pa ~' s~ o Dimensionless parameters, Eq. E8
l; CCL thickness, m v, € Dimensionless parameters, Eq. B8
Ly GDL thickness, m n ORR overpotential, V
Py Water vapor partial pressure, Pa i Dimensionless parameter, Eq. B8
Py Satu.ra.ted vapor pressure at 80 °C, Pa ™ Viscosity of liquid water, Pa's
De Capilliary pressure, Pa K Vaporization rate constant, atm ' m > s
P Liquid phase pressure, Pa &y Vaporization interfacial area factor
Pe Gas phase pressure, Pa v Air kinematic viscosity, m*s ™'
Do Oxygen pressure in the GDL, Pa p Air density, kg m >
Do, Oxygen pressure in the CCL, Pa o CCL proton conductivity, S m™"
o« Reference CCL proton conductivity, S m™'
10) Dimensionless parameter, Eq. E8
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Electrochemical impedance spectroscopy is a unique non-inva-
sive and non-destructive tool for operando testing of PEM fuel
cells. Measuring impedance spectra with modern EIS-equipment is
a routine procedure. Frequency-dependent EIS data allow one to
separate contributions of different transport and kinetic processes to
cell performance.

The typical Nyquist spectrum of a PEM fuel cell contains a
number of overlapping arcs representing the oxygen reduction
reaction (ORR) as well as oxygen and proton transport processes
inside the cell. In addition, in some cases EIS spectra exhibit a low-
frequency (LF) inductive loop. The nature of this loop has long been
discussed in the literature; yet, it is not fully understood. The
frequencies of the LF loop fall into the range 10°~10~" Hz, which
lies well below characteristic frequencies of ORR and oxygen
transport in porous layers.” The only process manifesting itself at
frequencies around 0.1 Hz is oxygen transport in the channel, which,
however, does not exhibit inductive behavior.> Apparently, in a cell
operated under constant air flow rate another slow process must be
responsible for this feature.

Three suspects are usually named as possibly being responsible
for the occurrence of the inductive loop at low frequency: carbon
monoxide poisoning, side reactions with intermediates, and water
transport in the membrane. Experiments of Wagner and Giilzow®
have shown that CO poisoning of the PEMFC cathode could be
responsible for the inductive loop. However, with the usage of
ultrapure gases, the remaining two candidates seem more likely
culprits. For side reactions with intermediates, Antoine, Bultel and
Durand® and later Makharia, Mathias, and Baker® explained the
inductive behavior by slow dynamics of ORR intermediates on the
Pt surface. Roy and Orazem’ and Roy, Orazem and Tribollet®
attributed the LF loop to the formation of hydrogen peroxide or Pt
dissolution. Setzler and Fuller’ reported a physics—based impedance
model that accounted for Pt oxidation and conjectured the formation
of the LF loop due to this process. A similar, though simpler model
has been developed by Gerling et al.'® As for water transport in the
membrane, Schneider'' observed a large inductive loop at low
temperature and low relative humidity, originating from water
generation. Wiezell'> reported a model according to which water
transport in the membrane results in the LF loop and the size of the
loop is in positive correlation with membrane thickness.
Holmstrém'? attributed the LF loop in their experiments to the
water transport characteristics of the membrane. Kosakian'* utilized
a physics-based MEA model to demonstrate that the occurrence of
the inductive loop can be attributed to the dynamics of membrane
hydration. A detailed literature review of the effect and possible
origins of a LF loop has been provided by Pivac and Barbir,"
suggesting that for different operating conditions, different mechan-
isms may come into play . Water transport may play a vital role at
low relative humidity and low temperature while side reactions
could come into play under fully humidified conditions. Meyer and
Zhao'® experimentally demonstrated the formation of an LF loop
induced by variation of the inlet air flow velocity in—phase with the
applied AC current perturbation.

Recently, Kulikovsky'” developed a model of the PEMFC im-
pedance that takes into account an empirical dependence of the proton
conductivity in the cathode catalyst layer (CCL) on the cell current due
to a slow variation of the ionomer phase humidification in the CCL.
The model leads to an inductive loop with the loop diameter
progortional to the cell current. The experimental studies of Gerling et
al.'"’ provide an evidence in favor of this mechanism. It is worth
mentioning that the loop apparently reduces the total cell static
resistivity, meaning that the effect is beneficial for the cell performance.

Below, we report a model for the PEMFC cathode impedance
that takes into account the effect of water dynamics on oxygen and
proton transport coefficients in the CCL. The model predicts an
inductive loop that forms due to the slow relaxation of the CCL
proton conductivity. In the limit of w — 0, the loop tends to the static
cell resistivity, which is lower than the unperturbed static resistivity.
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Figure 1. Schematic of the cathode side of a PEMFC, including cathode
catalyst layer (CCL) and gas diffusion layer(GDL). The governing equations
for water, oxygen and proton transport are given in the corresponding layers.

However, stability analysis of the reduced system of equations
shows that this type of “post—inductive” steady state is unreachable
due to system instability with respect to spatial perturbations.

We show that the size of the loop is determined by the
dependence of the liquid saturation, s, on the capillary pressure,
pe- In the range of p., where s is independent of p., the inductive
loop does not form. In this case, relaxation of the CCL oxygen
diffusivity results in a second low—frequency capacitive arc in the
Nyquist spectrum, which increases the cell static resistivity.

To simplify paper reading, details of all mathematical transfor-
mations are given in Appendices. In the bulk of the paper, we
formulate the basic transport equations and proceed to results and
discussions.

Model

General assumptions.—The schematic model domain and basic
transport equations are shown in Fig. 1. The model includes the
processes of liquid water permeation, vaporization, and water vapor
diffusion in CCL. It takes into account oxygen transport in CCL and
gas diffusion layer (GDL), and proton transport in CCL. All
aforementioned processes are assumed to occur in the through—plane
direction (along the x-axis in Fig. 1).

The following basic assumptions are employed:

¢ the air flow stoichiometry is infinite, thus the oxygen concen-
tration in the channel is uniform justifying a one-dimensional
treatment of oxygen transport in through—plane direction.

¢ the proton conductivity, o, and oxygen diffusivity, D,,,, depend
on the liquid water saturation in the CCL.

¢ the fluxes of water and oxygen through the CCL/membrane
interface are negligible. The absence of oxygen flux is justified with
the gas-tightness of the PEM. The absence of water flux implies that
the diffusive flux of water produced in the oxygen reduction reaction
(ORR) counterbalances the electroosmotic water flux from the anode
side. This assumption simplifies the model; in future work, it will be
relaxed.

® the water saturation in the GDL is constant and uniform
throughout the GDL thickness dimension.
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Basic transport equations.—Assuming that water in the ORR is
produced in liquid form, the transport of liquid and gaseous water
can be described by the following set of equations. The liquid water
saturation in the CCL, s, is determined by

105 Vi, = Qorr _ le7
V, o 2F  2F

(1]

where V,, is the molar volume of water, ¢ time, J; the liquid water
molar flux in the CCL, Qprr the ORR rate, Q;, the volumetric rate of
water vaporization, and F Faraday constant. For the water vapor
partial pressure p, in the CCL, we have

1 ap v + le

VI, = =, 2
oF [2]

RT ot

where J, is the water vapor molar flux in the CCL, R gas constant, T’
absolute temperature. The oxygen mass transport equation in terms
of partial pressure pg, is

1 ap02

__ Qore 3]

>

+ VJp, =
RT ot - 4F

where Jp, is the oxygen molar flux in the CCL. The proton charge
conservation equation reads

0
cd,a—’z + VI, = —Qurer [4]

where C, is the double layer capacitance, 1 the ORR overpotential,
and J, the local proton current density. The oxygen partial pressure
pp in the GDL is obtained from

+VJ, =0, [5]

where J,, is the oxygen molar flux in the GDL. In this work, we
assume that liquid water is evaporated in the CCL and water vapor is
rapidly removed through the GDL. The equations for water transport
in the GDL will be incorporated in the next version of the model.

Fluxes and reaction rates.—Liquid water flux follows Darcy law

[7)
=t P (6]
Viun,, 0x

where p; is the liquid water pressure in the CCL, K the liquid water
permeability, and g, the water viscosity. Water vapor flux is
described by Fick law

__Do,
Y RT ox’

(7]

where D, is the water vapor diffusivity.
Oxygen transport in the CCL and GDL conforms to Fick law

D, ap()2
Jo, = — 2 102 8
27 TRT ox [s]
D, dp,
Jy= -0 9
"7 TRT ox Bl

where D,., D, are the oxygen diffusivities in CCL and GDL,
respectively.
The proton transport follows Ohm law

J, = —06—, 10
s w [10]

where o is proton conductivity.

The ORR rate is given by Tafel law

P
OQorr = Ix ,Oezf exp(%), [11]
poé
ref

where p; is the reference partial oxygen pressure, b the ORR Tafel

slope, and i the volumetric exchange current density.
The rate of vaporization is given by

_ ZeoKflv

le lt

) = p)s [12]

where e is the elementary charge, « the rate constant of evaporation,
£ the vaporization interfacial area factor, /, the thickness of the
catalyst layer, and p,’ the saturation vapor pressure.

The substitution of Jy, J,, Jo,, Jp, Jp, Qorr and Oy, into the
transport equations is described in Appendix A. To simplify
calculations, we transform equations into dimensionless form; the
details are given in Appendix B. The steady—state scenario is
discussed in Appendix C. The analysis of the transient equations
is presented in Appendix D.

Saturation, capillary pressure and the transport parameters.—
To characterize the liquid saturation in the CCL, s, we introduce the
water retention curve (WRC), which is the relation between capillary
pressure and liquid saturation, s(p.). The capillary pressure, p,, is the
difference between the liquid phase pressure, p;, and the gas phase
pressure, p,,

P =P = D, [13]

The relation between water retention curve and pore size distribution
(PSD) has been discussed in recent works of Kusoglu et al.,'® Zhang
et al.,'® and Olbrich et al.>° The curve s(p.) serves as input for the
current model. The CCL exhibits mixed wettability, characterized by
the relationship between the contact angle and 90°. Hydrophilic
pores with contact angle smaller than 90°, adhere to a bimodal log-
normal PSD, akin to the model of the CCL pore space morphology
described by Eikerling.?' In contrast, hydrophobic pores, featuring a
contact angle larger than 90°, follow a monomodal log-normal PSD.
Similar methodologies have been employed by Weber et al.,>> Zhou
et al,>> and Kosakian et al.>* Given the average contact angle for
hydrophobic and hydrophilic pores, the water retention curve can be
derived from the PSD, as elaborated in Zhang et al.'"® and Olbrich
et al.>° However, due to the composite nature of pore-forming CCL
constituents (Pt, carbon, and ionomer), pore wettability is inherently
mixed, resulting in a continuous distribution of contact angles.
Consequently, in addition to employing mixed wettability for
constructing the water retention curve an alternative model, as
proposed by Olbrich et al.? offers a novel avenue for its determina-
tion. This model, accounting for the ink composition and intrinsic
material properties, presents a promising approach to calculating
WRC with statistical distributions of wetting properties. WRC
generated with the model of Olbrich et al. can be fitted using

s=at+ 49 = @) (1 + tanh(ipt - p“"’)). [14]

pc

This approach is used below. All three aforementioned curves are
shown in Fig. 2.

We employ a macro-homogeneous model, where gaseous and
liquid water are not separated in space. They share the same
representative elementary volume. It is assumed that in this volume,
some domains of the ionomer are in contact with liquid water, while
the other domains are in contact with water vapor. Overall, ionomer
proton conductivity is assumed to be proportional to liquid satura-
tion. A linear relation between proton conductivity, o, and liquid
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Figure 2. CCL water retention curves from Zhang et al.'” (open circles),

Kusoglu et al.'® (black points), and Olbrich et al.*° (red points). Solid line—
the function Eq. 14 fitted to the data. Parameters for the red curve in Eq. 14
are: a=0.2293, p.o = 0.5361 bar, k,. = 0.3984 bar.

water saturation, s, is thus employed for the CCL,?
6 = ks, [15]

where k, is a proportionality constant. Experiments®® show that to
good approximation, the CCL oxygen diffusivity D, changes with s
according to

D, = ox,d(l - 3)2’ [16]
where D, 4 is the “dry” value of CCL oxygen diffusivity.

Electrochemical impedance.—The basic transport Eqs. 1-5 were
nondimensionalized, linearized and Fourier—transformed to derive a
system of linear equations for the small perturbation amplitudes §',
Bl [552, ', pp in the @-space (Appendix B, D). The cathode
electrochemical impedance Z is given by

7
Z=-—T | . [17]
oo /0% | _,

We derive Z by solving the system of Eqs. D2-D5 assuming zero
oxygen pressure variation in the channel, 5} = 0. Note that water
vapor transport in the GDL is taken into account by Eq. 5. We
assume that liquid water is evaporated in the CCL. Here and below,
superscripts 0 and 1 represent static values and small perturbation
amplitudes in w—space, respectively.

Results and Discussion

EIS spectra are sensitive to variation in CCL water content,
which affects the proton conductivity and oxygen diffusivity. Under
the assumption of uniform s though the GDL thickness, EIS does not
“feel” variations of the GDL oxygen diffusivity with water content.
This variation could be registered in EIS experiments, if the GDL
liquid saturation is non-uniform. Nonetheless, the static value of
GDL oxygen diffusivity D, contributes to EIS spectra.

The cathode impedance Z for the base-case parameters in Table I
is depicted in Fig. 3. As can be seen, an inductive loop forms in the
Nyquist spectra for the two water retention curves from Ref. [18]
and Ref. [20]. The zoomed inductive loop obtained with the
retention curve from Ref.[20] is shown in Figure 4a. We will
rationalize the spectra in Fig. 3 by considering the limiting cases.

Limiting case: uniform and constant liquid saturation.—We
consider first the limiting case of time-independent liquid saturation
(s'=0). In this case, the liquid saturation is static and uniform
throughout the CCL depth, making oxygen diffusivity and proton

~ o o o O o o
g 0.04 .-b'e'o..'.'.-" "---._o °o (@)
£ $80° Ref.[18] e, %o
P o ey )
O 0.02 ° o Ref[19] N
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Figure 3. (a) Nyquist spectra of electrochemical impedance Z, Eq. 17,
calculated from Eqgs. D2-DS5 for the parameters in Table I with different
water retention curves, where open circles are from Zhang et al.,lg black dots
from Kusoglu et al.,'"® and red dots from Olbrich et al.>® (b) Bode plots
describing the frequency dependence of the imaginary part of the impedance
in (a). Parameters are listed in Table 1.

conductivity independent of time: D! = 0, ¢' = 0. The governing
Eqgs. D2-D5 reduce to Eqs. F1-F4. The Nyquist plot resulting from
the numerical solution of Eqs. F1-F4 with the parameters from
Table I does not exhibit an inductive loop (Fig. 4b). It is, thus, clear
that the inductive arc in Figs. 3, 4a originates from the relaxation of
one of the CCL transport parameters. It is advisable to separate the
contributions of variable o and D,, to cell impedance, as discussed
in the sections that follow.

Limiting cases of constant oxygen diffusivity and/or proton
conductivity.—The characteristic time of liquid saturation variation
is above 1 s, hence corresponding features are seen in the low-
frequency (LF) domain of the spectra. The LF parts of the Nyquist
spectra for all possible combinations of constant and/or time-
dependent D, and o are compared in Fig. 4.

In the case of transient o, but time-independent D, (D, = 0), the
governing Egs. D2-D5 reduce to Eqs. F5-F8, leading to the spectrum in
Fig. 4c. As can be seen, the inductive loop is more pronounced
(cf. Figs. 4a and 4c) and the static resistance of the cell is reduced by
10 mOhm cm® compared to Fig. 4a. Thus, the saturation-dependent
proton conductivity results in the inductive arc, which agrees with the
finding of Kulikovsky.'” Calculations show that the diameter of
the inductive loop increases with current density in agreement with the
analysis in Ref.[17]. However, in this work we employ a physics-based
model to describe water transport, while Kulikovsky'” used an empirical
relation between proton conductivity and current density.

In the case of transient D,, but time-independent o (' =0),
Egs. D2-D5 reduce to Eqs. F9-F12. The numerical solution to
Eqgs. F9-F12 with the parameters from Table I gives the spectrum in
Fig. 4d. The transient oxygen diffusivity gives rise to a second
low—frequency capacitive arc. Thus, within the scope of the model
above, the sole reason for the inductive loop is the saturation—-
dependent relaxation of o.

The role of the retention curve slope.—Equation 14 shows that
the slope of the WRC is determined by the parameter k,.: with k.
growth, the retention curve slope decreases. This parameter may
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Table 1. The base—case cell parameters used in calculations.

Parameters Symbol Value Unit
Faraday constant F 96485 Cmol !
Temperature T 353 K
Gas constant R 8.314 J/(K mol)
Saturated vapor pressure at 80 °C at flat liquid-gas interface pS 0.446 x 10° Pa
Reference oxygen pressure pg’zf (1 = RH) x p; x 0.21 Pa
Reference liquid water pressure eref 0.391 x 10° Pa
Dry CCL oxygen diffusivity Dora 1x10°8 m%s~!
Water vapor diffusivity D, 5% 1078 m’s~!
Dry GDL oxygen diffusivity Dy, 4 2% 107° m’s !
Volumetric exchange current density [ 1x10° Am™
Tafel slope (V/exp) b 0.030 Vv
Double layer capacitance Cyu 2% 107 Fm™
CCL Thickness I 10 x 107° m
GDL Thickness I 190 x 10~° m
Liquid water permeability K. 1x10°'® m?
Molar volume of liquid water Vi 1.8 x107° m>mol !
Viscosity of liquid water Ly 8.9 x 107* Pas
Elementary charge e 1.6 x 107

Vaporization rate constant K 1.38 x 10" Pa'm 25!
Vaporization interfacial area factor &y 80

Constant ofproton conductivity vs. saturation ko, 1 Sm~!
Cell current density Jeell 4 % 10° Am2
Relative humidity RH 0.8

Cathode pressure Deell 1.5 x 10° Pa
Proton conductivity oo 1 Sm™!

vary in quite a wide range, from 0.01 to 1.0 bar. The value of &, is
determined by the PSD and the contact angle of pores in the CCL.

In this Section we consider the case of variable D,, and o. First we
look into the effect of &, on the low frequency limiting impedance Zj;,,,
indicated by the small red circle in Fig. 4. As shown in Fig. 5, the
relationship between k,. and the static impedance is non-monotonic,
exhibiting a minimum value. At very low k. values, the steep slope of
retention curve is located at capillary pressures near p.o. However, the
steady state operates away from this pressure, where the retention curve
slope is close to zero. This regime corresponds to a plateau of the static
impedance at k. from 0.01 to 0.1 bar. As k,, increases, the capillary
pressure range with a high retention curve slope gradually extends to the
operating p.. range, inducing an inductive loop where Z;;,, decreases with
increasing k.. However, the increase in k. also reduces the steepness of
the slope, resulting in a smaller inductive loop diameter. After reaching
the minimum, further increase in k. results in the growth of the static
impedance Z;;,. Taking into account that infinite k. corresponds to the
absence of a liquid transient, Eq. 14, we conclude that rapid liquid
transient effects reduce the low-frequency impedance, thereby improving
the cathode performance. This result agrees with the analytical result for
the CCL resistivity in Ref. [17].

In essence, given that the steady state operates within the
capillary pressure range where k. has a significant impact, a higher
k,. indicates a reduced sensitivity of water saturation to variations in
pressure, whereas a lower k,. accentuates this sensitivity.
Subsequently, we investigate the influence of the parameter k,. on
the size of the inductive loop.

Upon increasing k,. from 0.7 bar to 1 bar, a consistent trend
emerges, revealing a reduction in the size of the inductive loop.
Consequently, lower values of k,. correspond to larger inductive
loops, underscoring the heightened susceptibility of liquid saturation
to fluctuations in capillary pressure.

Does relaxation of liquid saturation reduce the cathode static
resistivity?—From Figs. 4a, 4b it follows that a pronounced
relaxation of liquid saturation reduces the cathode low—frequency
resistivity. Similar results have been reported by Kulikovsky'’ who
demonstrated analytically that the current—dependent proton con-
ductivity o causes a reduction of the static resistivity.

This also means that for w — 0, the system reaches a pseudo
steady state differing from the steady state obtained at a constant
liquid saturation (cf. Figs. 4b and 4c). In every frame of Fig. 4, the
system tends to a separate pseudo steady state determined by the
perturbed transport parameters. At @& — 0, the exponent in
Fourier—transforms, Eqs. D1, tends to unity and equations deter-
mining the impedance still contain the small-amplitude perturbation
amplitudes of transport parameters. This distinguishes the problem
from the pure static one.

However, theoretically, the perturbation amplitudes could be
taken infinitesimally small and the perturbed system would differ
from the pure static one by the presence of negligible terms.
Paradoxically, in the limit of @ — 0, the system with negligible
perturbations tends to the steady state which differs quite substan-
tially from the “’pure” static (unperturbed) state. This suggests that at
least the “post—inductive” steady—state is unstable. Analysis of the
system stability is performed in the next section.

Stability analysis.—To simplify analysis, we neglect water
vaporization in the CCL. This condition can be achieved under
sufficiently low cell temperature and current. The governing
equations for this system are

—— + V= ——, [18]
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Figure 4. Zoomed Nyquist spectra of the electrochemical impedance, Eq. 17, for the water retention curve from Olbrich et al.>° for cases of (a) transient s, o,
D,,, (b) constant s, o, D,,, (c) transient s, o and constant D,,, (d) transient s, D,, and constant o.
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Figure 5. The relationship between the parameter k,. determining the
retention curve slope and the static impedance Z;;,,.
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Figure 6. The stability diagram. The line where the imaginary part of 2
equates to zero, Im(Q) = 0, separates the stable and unstable regimes of
CCL operation. Parameters are taken from Table I.

p)
L P0: 4 1y, = - Lorr. [19]
RT o 2 4F

P
Cd,a—’z + VI, = —Qure- [20]

We transform Eqgs. 18-20 into dimensionless form (Appendix G),
linearize the resulting equations and apply perturbations of the form

F@E 1) =3°@) + 7N, Qexp((Af - Q7). 5] <3°, [21]
where § stands for p;, 77 and po,.

Physically, the term in the exponential function in Eq. 21 means
that the applied perturbation varies harmonically in time and space.
The spatial (¥—) variation of the perturbation is described by the
wave vector A, and the temporal variation is described by the
frequency (2, which is a complex—valued variable. Our goal is to
derive and analyze the dispersion relation {2(A). From Egs. 21 it
follows, that if for some A, the frequency ¢ has a positive imaginary
part, the system is unstable. Indeed, let Q = Q,, + i|Q;,|; then
exp(—iQf) = exp(—iQ,.f)exp(|Q;,|f), meaning that the second
factor on the right hand side is growing with time.

The mathematical details of the derivation of the {2(A) equation
are given in Appendix G. Numerical calculations of ) are performed
with parameters from Table 1. Figure 6 displays the stability diagram
of the system on the (A, Im (€2)) plane. The line that separates the
stable and the unstable domains corresponds to the solution of
Im(Q)(A) = 0 (Fig. 6). Notably, within the range of A values
spanning from 0.001 to 0.1, all scenarios consistently exhibit
positive values of the imaginary part of €2, indicating the presence
of instability across this range of parameters.

The mechanism of instability is as follows. Small growth of the
ORR overpotential increases the cell current and thereby leads to
higher liquid saturation and liquid water pressure in the CCL. Higher
saturation, in turn, retards oxygen transport and further increases the
overpotential. This positive feedback loop could work until the CCL
is fully flooded when p; exceeds the critical value (tipping point).
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Figure 7. The characteristic time of instability growth vs wave vector A for
the indicated distances from the membrane.

Calculations show that for k;, = 0, the system is stable, signifying
that the source of instability is the transient nature of liquid pressure.
We conclude that the post—inductive steady states in Figs. 4a, 4c
could be unreachable due to the instability discussed above. Figure 7
shows the characteristic time of instability growth as a function of
wave vector A.

In 2006, Nazarov and Promislow>’ reported instability of PEM
fuel cell with respect to a small variation of the membrane
humidification. Within the scope of their model, the instability
occurs due to the following mechanism. A small local increase in
water content of the membrane separating the anode and cathode
leads to the local increase in membrane proton conductivity. The
increase in conductivity in turn, increases the local current through
the perturbed domain, which leads to growing water production in
the adjacent domain of the CCL. If current in the external circuit is
fixed, the cell splits up into two domains, with the small current in a
water—deficient domain, and larger current in a water—filled domain.

The instability of the CCL discussed here works the other way
round. It could eventually split up the cell into two domains: one
with high liquid CCL saturation (flooded), where less oxygen is
transported and less current is produced, and another with low
saturation, where most of the current is generated. Possible
candidates for such a split are the under—rib and under—channel
domains with a lot of water and lower current in the first one, and
less water, but higher current in the second one.?*°

Our analysis is linear and it only shows that the “post—inductive”
steady—state is unstable. However, it tells nothing about the non-
linear phase of instability development, which would require
numerical calculations. We expect that the instability would lead
to oscillating behavior of the cell potential and to the respective
oscillations (perhaps, chaotic) of the cell low—frequency impedance.

In this work, we do not consider effects of liquid water transport
in the GDL. Work on these effects is underway and the results will
be published elsewhere. For simplicity, we also assume that D, is a
constant parameter. The model in its present form is complicated and
a number of simplifying assumptions helped us to solve it. The
dependence of D, on liquid saturation will be incorporated in the
next version of our model.

Finally, it should be noted that the EIS spectra are extremely sensitive
to the shape of the WRC and to the cell operating parameters. The
present paper aims at understanding the mechanism behind the formation
of an inductive loop in the Nyquist spectrum. To this end, the cathode
RH and the cell current density have been selected in order to get an
inductive loop in two spectra the Fig. 3. However, our calculations show
that small variations of the WRC shape, cathode RH, or cell current
density could lead to dramatic changes in the shape of spectra: the

inductive loop may either disappear, or the capacitive oxygen—transport
arc could form instead of the loop (see open circle curves in Figs. 2 and
3.). Experimental impedance spectra in the literature qualitatively agree
with this behavior: some spectra exhibit inductive loops, while others do
not.* The parametric dependence of impedance spectra is currently
being studied with the model above. The results will be published
elsewhere.

Conclusions

A model for the PEM fuel cell cathode impedance has been
developed. The model takes into account liquid and gaseous water
transport in the cathode catalyst layer and the dependence of oxygen
and proton transport parameters on the dynamic liquid water
saturation in the CCL. The slow relaxation of oxygen diffusivity
yields a second capacitive semicircle which increases the static
resistivity. In contrast, the slow relaxation of proton conductivity
upon variation of liquid water content produces an inductive loop in
the Nyquist spectrum.

A key aspect in the formation of the inductive loop is the
dependence of the liquid saturation on the capillary pressure in the
CCL. In the range of capillary pressurewhere the saturation does not
depend on it, the inductive loop does not form. A stability analysis of
the linearized reduced system of equations shows that the steady
state corresponding to the inductive loop is unstable with respect to
spatial fluctuations. A small local increase in overpotential leads to
local growth of the liquid saturation. This increase lowers the rate of
oxygen transport, which further increases the overpotential. This
positive feedback loop may work until the catalyst layer is
completely flooded. The characteristic time of instability growth
varies from 30 s up to several hundred seconds, depending on the
spatial location and size of the fluctuation. This type of instability
could cause a spatial splitting of the CCL into domains with high and
low water content, with the current production mainly in the
non—flooded domain. Detailed analysis of this effect will require
solution of the two—dimensional extension of the current model in
time domain.

Appendix A. The Detailed Governing equations for Water,
Oxygen and Proton Transport in CCL

To simplify calculations, we introduce two parameters

v
k= KL= S

HoVin' Fl,

[Al]

Substituting J;, Qorr, Qi from Egs. 6, 11, 12 into 1, we get

Lo OpL _ x| Pos

. =
V,, ot oxt  2F p(r;;f

]exp(Z) —ky(p —p,).  [A2]

Substituting J,, Qorg, Qi from Eqs. 7, 11, 12 into 2 gives

D, 9°p,
RT ox?

1o
RT ot

=ky(p] —p,) [A3]

Substituting Jo,, Qogr from Egs. 8, 11 into 3 leads to

7 0, i
Po, _ 0 D, Po, | _ _RTix| Po, eXp(ﬂ)’ [A4]
ot ox ox 4F | p ng b
and substitution of J,, Qogr from Eqgs. 10, 11, into Eq. 4 yields
0 0
a2l - i(o—") = iy Lo |exp (ﬁ) [A5]
ot  ox\ ox p ng b
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Finally, substitution of J, from Eq. 9 into Eq. 5 results in

P Pe
Py _p, P _, [A6]
ot ox?2

Appendix B. The Dimensionless Governing equations for Water,
Oxygen, Proton Transport in CCL

To simplify calculations, we introduce dimensionless variables:

- X 7 t ~ 4FP a)c
X =—, = —, _—
I, fye o (r*bRT
4Fpy/ D _ 4Fp; )/ D,
B o*bRT ’ " 64bRT
4Fp! Tk 4Fpg Ty p,
L =——5— ky=—7-—, p, =
isd] ’ L ' P(;ng
~ pL ~ pb ~ pOz
PL= "5 Po = N POy T
1’0‘; ocz p0e2
._© _ - j
o=, n= ﬁ, J = ,L,
O b J*
b=ty j,=22, g,=522 [B1]
l[ Ly

where x is the coordinate thorough the cell, /, the thickness of CCL, ¢
time, ¢« the characteristic time, D,,, the oxygen diffusivity of CCL,
p(;ef the reference oxygen pressure D, the oxygen diffusivity of
GDL, F Faraday constant, o proton conductivity of CCL, o« proton
conductivity of CCL at zero current density, b ORR Tafel slope, D,
the water vapor diffusivity, p? saturated water vapor pressure, p;<
reference (inlet) liquid water pressure, 7 ORR overpotential (positive
by convention), j local proton current density in the CCL, j«
characteristic current density, i~ ORR volumetric exchange current
density, w angular frequency of the applied AC signal, and C
double layer capacitance. The saturated water vapor pressure p,
(bar) is calculated using the standard cubic dependence on tempera-
ture T (K):

logo(p;) = =2.1794 + 0.029 53-(T — 273) — 9.1837-1073(T — 273)?
+1.4454-1077(T — 273)3

(B2]
Using dimensionless variables, Eqs. A2—A6 transform to
205~ 0%p,
Y — -k = 2Py, exp(i) — kun (3’ — p,). [B3]
or ox?
aijv Y a p\
w— = &’Dy—— = kn(p; = p,), [B4]
ot 072
op o~ 9
2 102 2 0> - _
— e“—| D,y = - ex . B5
W=7 af( P Po, exp(i) [B5]
o , 0 (~ 017)
— —&e—|6— ex B6
p™ 77 \% oz —Po, exp(ip). [B6]
op 0%
2Po_2p, TP _ g, [B7]
o1 0"

where
4Fp[ A ef
— . [BS]
m l*l Cdl bRT
Appendix C. Steady State Dimensionless Equations
In steady state, Eq. B6 transforms to
2.9 (001" =50 o o | da 0| _,
ox\ ox %27 7 gx | _ & ox |_ ’
=0 x=1
[C1]

where the left boundary condition stems from he Ohm’s law, and the
right b.c. means zero proton current density through the CCL/GDL
interface. Equation B3 transforms to

7 62132 =0 7% _ [ (55 _ 0
—ki, 72 = 2]702 e’ = klv(pv - b )s
op; 01y 5
E . =0, PL(l) = Deell» [C2]
i=

Here, the left b.c. means zero liquid water flux in the membrane, one
of the model assumptions. Th right b.c. expresses zero capillary
pressure at the CCL/GDL interface, which is quite reasonable taking
into account large GDL pore radii. Equation B4 transforms to

=0, B =p

[C3]

where the left b.c. means zero water vapor flux through the
membrane, and the right b.c. stems from continuity of the water
vapor concentration at the CCL/GDL interface. Equation B5 takes
the form

~0
2 0 ~0 apOQ
DU)C ~

ox ox

~0
o 9P,
2 oF

=0, Po, (D=5 ), [C4]

=0

with the zero oxygen flux in the membrane and continuity of the
oxygen concentration at the CCL/GDL interface as the left and right
b.c., respectively.

In the steady state, Eq. B7 transforms to

~0 ~
= 0P, <0 %o, _ o 0Py
Db =0, 0x = Db >
%2 % %
F=1— I=1+
PR+ 1) =1, [C5]

where the b.c. mean continuity of the oxygen flux at the CCL/GDL
interface, and fixed oxygen concentration in the cathode channel.
Here, [, is the GDL thickness.

Adopting the fitting function for water retention curve in Eq. 14,
we have
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0_
s°=a+u 1 + tanh P “Po
2 kpe

= (1 - )2 ox,d>
6" = lggso
where k, = k,/cy. We neglect the influence of s on D, and k.

Appendix D. Transient State

To perform linearizaton and Fourier—transform of Eqs. B3, B4
and BS5, we use the following expansions

y(@& 1) =y'%) + Y&, @)expliar), |y <y, [D1]

where y stands for s, pr, p,, Po,, Ps. 7], and the superscripts 0, 1 mark
the static value and the small perturbation amplitude, respectively.

Substituting s, pr, Po,, Py » Eqs. D1, into B3-B6, and subtracting
the respective static equation, we obtain

B 02 ~1
kr de = yli@s' — 2e" po2 - 2p0 - ki, [D2]
B 621
e 20 = oy + ki (D3]
o052
3 [ ~o 95
2= D 0>
x| ™ ox
~0
.. S0, . S0 d | x1 de
=(1w;42 + e )pé2 + pgz e’ ;11 - ezg(DM 0)?2 ], [D4]

0 ( .o07 0 20 A0 s a (. o07°
£2 0 _ 1 0 1 2 1
( pr ) =e' Po, (poze'i + 1@)7j e pe (0 — |

ox o0xX
[D5]
The boundary conditions to close Egs. D2-D5 are
=1
—L =0, p'(1)=0 [D6]
ox T ’
=0
op! .
— =0, p1)=0, (D7]
ox |
aﬁéz ~ ~1
p =0, pg, (1) =p1), [D8]
#=0
o o o'
’71 |3—' =1 perturb? iN =0. [D9]
L P

Adopting the fitting function for water retention curve in Eq. 14, we
have

0 l _ rej
sl = ad-q9 1 — tanh? Fe — (pL Poz Po
2 kpc kpc

[D10]

Dy, = =2(1 — s9s'D . [D11]

We neglect the influence of saturation on D, and k., thus D~v1 = 0 and
k=0
Appendix E. The Solution to p,(1)

Substituting p, in Eq. B7 with Eq. D1 and subtracting the static
equation, we obtain

0
W2plio — 2D, afh =0 [E1]
The boundary conditions are
o0 95 0 9P, 3
n— | =Dy =t B +l)=p (B2
o0x ~
i=1 x=1
The solution for p(X) is
A B
~1 ~ . ~
= — cosh (¢px) — — sinh (¢X), E3
Py = (#%) N (¢5%) [E3]
where
~0 0[51
A = sinh(¢(1 + lb)) 0(32 — cosh (¢)ﬁ]i, [E4]
" =1
~0 ~1
D, 9p
= cosh(¢(1 + [,))—2—2 — sinh($)p,, [E5]
D” ¢ K =1

and

N = sinh (¢) sinh (¢ (1 + 1)) — cosh (¢ (1 + I,))cosh (). [E6]

Thus,
ap)
Bl = —aDy—2 |+ pp) [E7]
=1
where
tanh (7, 1 i@
LT R Y Ty
Dy ¢ cosh (/) e’D,,

Appendix F. Appendix F. Limiting Cases

For the limiting case 1, with s' =0, D' =
Eqgs. D2-D5 reduce to

0070D =0,

_ 0%p!
k L
Loz —

~ 70 ~ ~ ~
= =25, e = 2pg e — kup,, [F1]
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o 0%p! _
e’D, —3- = (iop® + kn)p), [F2]
ox
2~1
9| 0 9P i y o
szg(Dﬁl — ] = po, (iop® + &™) + py ™7, [F3]
02! ~ . .
2; (&0 0’72 ) =P}, e’ + (p e + i) [F4]
. .

For the limiting case 2, when DY, = 0, Eqs. D2-D5 reduce to

_ 0%/ 5
kr asz = ylios' — 2e7p) - 2% it = kup), [F5]
o 0%p! .
D, e (iop® + kn)p,., [F6]
29| Y Po, = (iap? + e™p) + p ! F7
€ g ox Py - (lw/’l € )poz poze m, [F7]

a (. o0i°
e + i@ — &2 51—/ |.
' 6x( ox )

(F8]

For the limiting case 3, when ol = 0, Egs. D2-D5 reduce to

k, azpz el ~1 Tl
193 FY%) =y 2igs! — 2e pO2 - 2p02 7,1 _ kzvpv, [F9]
B 02 ~1
&2D° afv = Gap® + k)P, [F10]

<1
2 d D~0 apOZ
aw| ™ ox

.~ 70\ ~ 1 ~
= (ap® +eM)py + P,

) Py
et — SZ:X[DUX ();2 ] [F11]

0 .

Appendix G. Appendix G. Stability Analysis of the Reduced
System

To simplify calculations, we use the dimensionless variables in
Appendix B. Equations 18, 20, and 3 transform to

,0s =~ (3[9

T kL? = 2p,, exp(i), [G1]
i o (o ) _
- 625(66—2) = o, exp(i), [G2]

op o~ 0P _
;ﬂ#—ez—(aﬂ% = P, exp(i). [G3]

For the dependence of saturation on capillary pressure, a linear
relation is adopted. The linear relation approximates the transition
region in the Eq. 14 function in the range of capillary pressures
DPeo = kpe < Pe S Peo + ke Since vaporization is neglected, the
vapor pressure remains constant and we can write

S=L+So—sg, [G4]

where s, = (p, + pn,)/kpc.. When so = s,, we have

§ = m’ [G5]

Kpe

or, in the dimensionless form

s = ka(ﬁL - ﬁOz)’ [G6]

where ko, = p&? [kpe.
For proton conductivity ¢ in the CCL, we adopt Eq. 15, hence
6 = ky5/04, Or

o =

kakOZ

O

(B, = Poy)- [G7]

Given k,/o+ =1, we have 6 = ko, (P — Po,)-
For oxygen diffusivity D,,, in the CCL,
Doy = (1 = ko,(P, = P,))*Doxa [G8]

With Egs. G6, G7 and G8, G1, G2 and G3 are transformed to

oko,(p, — Pp,)) -~ 0%

2 2\L [2) L _ ~Ax ~

Y pr — kL pronie 2P, exp(@), [GI]
9 50 _ 0] . _

i £ E(koz(PL - Poz)g = =Py, exp(i), [G10]
ap < 0 L op

o sZDgx,%((l ~ koy(By = o, )P

=P, exXp(@). [G11]

Now, we introduce perturbations to the system, a time-dependent
perturbation with complex—valued frequency (2, and an x-dependent
perturbation with the real positive wave vector A. To perform
linearizaton and Fourier—transform of Eqs. G9, G10 and G11, we use
the expansions 21.

Substituting Egs. 21 into G9, G10 and G11, and subtracting the
respective static equation, we obtain a system of linear equations for

the perturbation amplitudes p; , 7' and ﬁ};zz

ayy — iQr%o0, an a3+ iQr%o, || L 0
an az — iQ ans it 1=|o| [G12]

102 51
as) as a3 — iQu Po,

where the matrix elements are

7 A2
ap = kLA,
~0 70
app ==2p, ",
=0

aj3=—2e", [G13]
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_ 25
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. op; - b))
x | i2ko, Al = ko, (B, — B, N

+ (1 = ko, (50 = P
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+ 2k
02 ox ox
- 2k02(1 - ka(ﬁg - ﬁgz ))
021-50 aﬁO i
x| =2 +in—2 || + e [G15]
ox X

Nontrivial solutions to Eq. G12 exist if the system determinant is
zero. This leads us to cubic algebraic equation for 2, which is solved
numerically.
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