001037564 001__ 1037564
001037564 005__ 20250203124523.0
001037564 0247_ $$2doi$$a10.1016/j.powera.2024.100157
001037564 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00752
001037564 0247_ $$2WOS$$aWOS:001308631300001
001037564 037__ $$aFZJ-2025-00752
001037564 041__ $$aEnglish
001037564 082__ $$a621.3
001037564 1001_ $$0P:(DE-Juel1)185975$$aWang, Zhenya$$b0
001037564 245__ $$aThe implementation of a voltage-based tunneling mechanism in agingmodels for lithium-ion batteries
001037564 260__ $$a[Amsterdam]$$bElsevier ScienceDirect$$c2024
001037564 3367_ $$2DRIVER$$aarticle
001037564 3367_ $$2DataCite$$aOutput Types/Journal article
001037564 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737444004_5303
001037564 3367_ $$2BibTeX$$aARTICLE
001037564 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037564 3367_ $$00$$2EndNote$$aJournal Article
001037564 520__ $$aPrecise explanation and prediction of the aging behavior of lithium-ion batteries (LIBs) is essential for improvingbattery management systems. It is quickly becoming a hotspot in battery research. Solid electrolyte interphase(SEI) growth is regarded as the dominant factor of capacity losses in LIBs. However, the growth of SEI is yet to beunderstood in more detail due to its complexity. In the present paper, an advanced voltage-based aging modelusing an electron tunneling mechanism is proposed and validated by experiments. This model employs theelectrode voltage as an input parameter for the first time with a tunneling mechanism, which is more flexiblethan existing energy-based approaches and can be used to predict the electron tunneling (dis)charge cycles. Theproposed model is used to simulate tunneling current profiles during (dis)charging of graphite, LTO, and blendSi/C negative electrodes. The simulation results prove and explain that lower states-of-charge of LIBs mitigateelectron tunneling and SEI growth, further reducing calendar aging. That work can be used to describe batterycapacity losses better and it is crucial for predicting the state-of-health of LIBs.
001037564 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001037564 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001037564 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001037564 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitri$$b1$$eCorresponding author
001037564 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2
001037564 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b3
001037564 773__ $$0PERI:(DE-600)3022892-X$$a10.1016/j.powera.2024.100157$$p100157$$tJournal of power sources advances$$v29$$x2666-2485$$y2024
001037564 8564_ $$uhttps://juser.fz-juelich.de/record/1037564/files/Wang_Implementation.pdf$$yOpenAccess
001037564 909CO $$ooai:juser.fz-juelich.de:1037564$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185975$$aForschungszentrum Jülich$$b0$$kFZJ
001037564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b1$$kFZJ
001037564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
001037564 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH
001037564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b3$$kFZJ
001037564 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001037564 9141_ $$y2024
001037564 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001037564 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037564 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-02
001037564 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCE ADV : 2022$$d2025-01-02
001037564 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-12-18T10:43:15Z
001037564 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-12-18T10:43:15Z
001037564 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001037564 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
001037564 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037564 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2020-12-18T10:43:15Z
001037564 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001037564 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001037564 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001037564 920__ $$lyes
001037564 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001037564 980__ $$ajournal
001037564 980__ $$aVDB
001037564 980__ $$aUNRESTRICTED
001037564 980__ $$aI:(DE-Juel1)IET-1-20110218
001037564 9801_ $$aFullTexts