001     1037564
005     20250203124523.0
024 7 _ |a 10.1016/j.powera.2024.100157
|2 doi
024 7 _ |a 10.34734/FZJ-2025-00752
|2 datacite_doi
024 7 _ |a WOS:001308631300001
|2 WOS
037 _ _ |a FZJ-2025-00752
041 _ _ |a English
082 _ _ |a 621.3
100 1 _ |a Wang, Zhenya
|0 P:(DE-Juel1)185975
|b 0
245 _ _ |a The implementation of a voltage-based tunneling mechanism in agingmodels for lithium-ion batteries
260 _ _ |a [Amsterdam]
|c 2024
|b Elsevier ScienceDirect
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737444004_5303
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Precise explanation and prediction of the aging behavior of lithium-ion batteries (LIBs) is essential for improvingbattery management systems. It is quickly becoming a hotspot in battery research. Solid electrolyte interphase(SEI) growth is regarded as the dominant factor of capacity losses in LIBs. However, the growth of SEI is yet to beunderstood in more detail due to its complexity. In the present paper, an advanced voltage-based aging modelusing an electron tunneling mechanism is proposed and validated by experiments. This model employs theelectrode voltage as an input parameter for the first time with a tunneling mechanism, which is more flexiblethan existing energy-based approaches and can be used to predict the electron tunneling (dis)charge cycles. Theproposed model is used to simulate tunneling current profiles during (dis)charging of graphite, LTO, and blendSi/C negative electrodes. The simulation results prove and explain that lower states-of-charge of LIBs mitigateelectron tunneling and SEI growth, further reducing calendar aging. That work can be used to describe batterycapacity losses better and it is crucial for predicting the state-of-health of LIBs.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 1
|e Corresponding author
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 2
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 3
773 _ _ |a 10.1016/j.powera.2024.100157
|0 PERI:(DE-600)3022892-X
|p 100157
|t Journal of power sources advances
|v 29
|y 2024
|x 2666-2485
856 4 _ |u https://juser.fz-juelich.de/record/1037564/files/Wang_Implementation.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037564
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185975
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCE ADV : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-12-18T10:43:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-12-18T10:43:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2020-12-18T10:43:15Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21