001037565 001__ 1037565
001037565 005__ 20250121215651.0
001037565 037__ $$aFZJ-2025-00753
001037565 041__ $$aEnglish
001037565 1001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b0$$eCorresponding author$$ufzj
001037565 1112_ $$aKonstantin Ivanov Intercontinental Seminar$$cOnline$$d2025-01-17 - 2025-01-17$$wFrance
001037565 245__ $$aMagnetic resonance of electrochemical components and devices$$f2025-01-17 - 
001037565 260__ $$c2025
001037565 3367_ $$033$$2EndNote$$aConference Paper
001037565 3367_ $$2DataCite$$aOther
001037565 3367_ $$2BibTeX$$aINPROCEEDINGS
001037565 3367_ $$2ORCID$$aLECTURE_SPEECH
001037565 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1737442145_21956$$xInvited
001037565 3367_ $$2DINI$$aOther
001037565 520__ $$aMagnetic resonance (MR) is a powerful analytical tool in electrochemistry due to its selectivity and versatility. If studying materials for electrochemical applications, similar opportunities and limitations exist as for other materials. However, some established paradigms for data analysis and interpretation need to be questioned for ion-conducting materials with stochastic occupancy. Since performance-limiting processes often occur at interfaces, one would like to study working cells, ideally during operation. In this case various additional challenges are introduced, such as electrically conducting components that cause losses in common MR setups, or changing impedances during cycling and aging that alter the Q of the resonator.In this talk, strategies will be discussed to identify and mitigate some of these challenges. For some questions, a compromise is offered by studying components of electrochemical systems, where interfaces are present yet losses can be minimised. NMR and EPR examples of battery applications will be presented where sample preparation and protocols are adapted to address specific questions. Laplace inversion without non-negativity constraint is demonstrated as a useful tool to analyse relaxation and diffusion data, and the importance of an integrated approach combining MR and theory for data interpretation is highlighted.
001037565 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001037565 536__ $$0G:(GEPRIS)422726248$$aDFG project G:(GEPRIS)422726248 - SPP 2248: Polymer-basierte Batterien (422726248)$$c422726248$$x1
001037565 536__ $$0G:(BMBF)13XP0352B$$aInOPlaBat - In-Situ und Operando Plating Detektion in Batterien (13XP0352B)$$c13XP0352B$$x2
001037565 909CO $$ooai:juser.fz-juelich.de:1037565$$pVDB
001037565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b0$$kFZJ
001037565 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b0$$kRWTH
001037565 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001037565 9141_ $$y2025
001037565 920__ $$lyes
001037565 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001037565 980__ $$atalk
001037565 980__ $$aVDB
001037565 980__ $$aI:(DE-Juel1)IET-1-20110218
001037565 980__ $$aUNRESTRICTED