001037613 001__ 1037613
001037613 005__ 20250203103234.0
001037613 0247_ $$2doi$$a10.22323/1.456.0075
001037613 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00784
001037613 037__ $$aFZJ-2025-00784
001037613 1001_ $$0P:(DE-HGF)0$$aEngelhardt, Michael$$b0$$eCorresponding author
001037613 1112_ $$a25th International Symposium on Spin Physics$$cDurham, NC$$d2023-09-24 - 2023-09-29$$gSPIN2023$$wUSA
001037613 245__ $$aQuark orbital angular momentum in the proton from a twist-3 generalized parton distribution
001037613 260__ $$aTrieste, Italy$$bSissa Medialab Trieste$$c2024
001037613 300__ $$a10p.
001037613 3367_ $$2ORCID$$aCONFERENCE_PAPER
001037613 3367_ $$033$$2EndNote$$aConference Paper
001037613 3367_ $$2BibTeX$$aINPROCEEDINGS
001037613 3367_ $$2DRIVER$$aconferenceObject
001037613 3367_ $$2DataCite$$aOutput Types/Conference Paper
001037613 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1737376817_4079
001037613 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001037613 4900_ $$aProceedings of 25th International Symposium on Spin Physics — PoS(SPIN2023)
001037613 520__ $$aQuark orbital angular momentum in the proton is evaluated via a Lattice QCD calculation of thesecond Mellin moment of the twist-3 generalized parton distribution ˜E2T in the forward limit. Theconnection between this approach to quark orbital angular momentum and approaches previouslyutilized in Lattice QCD calculations, via generalized transverse momentum-dependent partondistributions and via Ji’s sum rule, is reviewed. This connection can be given in terms of Lorentzinvariance and equation of motion relations. The calculation of the second Mellin moment of˜E2T proceeds via a finite-momentum proton matrix element of a quark bilocal operator with astraight-line gauge connection and separation in both the longitudinal and transverse directions.The dependence on the former component serves to extract the second Mellin moment, whereasthe dependence on the latter component provides a transverse momentum cutoff for the matrixelement. Furthermore, a derivative of the matrix element with respect to momentum transfer inthe forward limit is required, which is obtained using a direct derivative method. The calculationutilizes a clover fermion ensemble at pion mass 317 MeV. The resulting quark orbital angularmomentum is consistent with previous evaluations through alternative approaches, albeit withgreater statistical uncertainty using a comparable number of samples
001037613 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037613 536__ $$0G:(DE-Juel-1)PF-JARA-SDS005$$aSDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)$$cPF-JARA-SDS005$$x1
001037613 536__ $$0G:(NRW)NW21-024-A$$aNRW-FAIR (NW21-024-A)$$cNW21-024-A$$x2
001037613 588__ $$aDataset connected to CrossRef Conference
001037613 7001_ $$0P:(DE-HGF)0$$aHasan, Nesreen$$b1
001037613 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b2$$ufzj
001037613 7001_ $$0P:(DE-HGF)0$$aLiuti, Simonetta$$b3
001037613 7001_ $$0P:(DE-HGF)0$$aMeinel, Stefan$$b4
001037613 7001_ $$0P:(DE-HGF)0$$aNegele, John$$b5
001037613 7001_ $$0P:(DE-HGF)0$$aPochinsky, Andrew$$b6
001037613 7001_ $$0P:(DE-Juel1)185942$$aRodekamp, Marcel$$b7$$ufzj
001037613 7001_ $$0P:(DE-HGF)0$$aSyritsyn, Sergey$$b8
001037613 773__ $$a10.22323/1.456.0075
001037613 8564_ $$uhttps://juser.fz-juelich.de/record/1037613/files/SPIN2023_075.pdf$$yOpenAccess
001037613 909CO $$ooai:juser.fz-juelich.de:1037613$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b2$$kFZJ
001037613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185942$$aForschungszentrum Jülich$$b7$$kFZJ
001037613 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037613 9141_ $$y2024
001037613 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037613 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001037613 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037613 980__ $$acontrib
001037613 980__ $$aVDB
001037613 980__ $$aUNRESTRICTED
001037613 980__ $$acontb
001037613 980__ $$aI:(DE-Juel1)JSC-20090406
001037613 9801_ $$aFullTexts