Home > Publications database > Quark orbital angular momentum in the proton from a twist-3 generalized parton distribution > print |
001 | 1037613 | ||
005 | 20250203103234.0 | ||
024 | 7 | _ | |a 10.22323/1.456.0075 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-00784 |2 datacite_doi |
037 | _ | _ | |a FZJ-2025-00784 |
100 | 1 | _ | |a Engelhardt, Michael |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
111 | 2 | _ | |a 25th International Symposium on Spin Physics |g SPIN2023 |c Durham, NC |d 2023-09-24 - 2023-09-29 |w USA |
245 | _ | _ | |a Quark orbital angular momentum in the proton from a twist-3 generalized parton distribution |
260 | _ | _ | |a Trieste, Italy |c 2024 |b Sissa Medialab Trieste |
300 | _ | _ | |a 10p. |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1737376817_4079 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
490 | 0 | _ | |a Proceedings of 25th International Symposium on Spin Physics — PoS(SPIN2023) |
520 | _ | _ | |a Quark orbital angular momentum in the proton is evaluated via a Lattice QCD calculation of thesecond Mellin moment of the twist-3 generalized parton distribution ˜E2T in the forward limit. Theconnection between this approach to quark orbital angular momentum and approaches previouslyutilized in Lattice QCD calculations, via generalized transverse momentum-dependent partondistributions and via Ji’s sum rule, is reviewed. This connection can be given in terms of Lorentzinvariance and equation of motion relations. The calculation of the second Mellin moment of˜E2T proceeds via a finite-momentum proton matrix element of a quark bilocal operator with astraight-line gauge connection and separation in both the longitudinal and transverse directions.The dependence on the former component serves to extract the second Mellin moment, whereasthe dependence on the latter component provides a transverse momentum cutoff for the matrixelement. Furthermore, a derivative of the matrix element with respect to momentum transfer inthe forward limit is required, which is obtained using a direct derivative method. The calculationutilizes a clover fermion ensemble at pion mass 317 MeV. The resulting quark orbital angularmomentum is consistent with previous evaluations through alternative approaches, albeit withgreater statistical uncertainty using a comparable number of samples |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) |0 G:(DE-Juel-1)PF-JARA-SDS005 |c PF-JARA-SDS005 |x 1 |
536 | _ | _ | |a NRW-FAIR (NW21-024-A) |0 G:(NRW)NW21-024-A |c NW21-024-A |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Hasan, Nesreen |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Krieg, Stefan |0 P:(DE-Juel1)132171 |b 2 |u fzj |
700 | 1 | _ | |a Liuti, Simonetta |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Meinel, Stefan |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Negele, John |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pochinsky, Andrew |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Rodekamp, Marcel |0 P:(DE-Juel1)185942 |b 7 |u fzj |
700 | 1 | _ | |a Syritsyn, Sergey |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.22323/1.456.0075 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1037613/files/SPIN2023_075.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1037613 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132171 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)185942 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|