001037622 001__ 1037622 001037622 005__ 20250203124521.0 001037622 0247_ $$2doi$$a10.1126/scirobotics.adn2733 001037622 0247_ $$2pmid$$a39475697 001037622 0247_ $$2WOS$$aWOS:001344950000001 001037622 037__ $$aFZJ-2025-00793 001037622 082__ $$a600 001037622 1001_ $$00000-0003-4927-5390$$aPrescott, Tony J.$$b0 001037622 245__ $$aUnderstanding the sense of self through robotics 001037622 260__ $$aWashington, DC$$bAAAS$$c2024 001037622 3367_ $$2DRIVER$$aarticle 001037622 3367_ $$2DataCite$$aOutput Types/Journal article 001037622 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738570450_21854 001037622 3367_ $$2BibTeX$$aARTICLE 001037622 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001037622 3367_ $$00$$2EndNote$$aJournal Article 001037622 520__ $$aRobotics can play a useful role in the scientific understanding of the sense of self, both through the construction of embodied models of the self and through the use of robots as experimental probes to explore the human self. In both cases, the embodiment of the robot allows us to devise and test hypotheses about the nature of the self, with regard to its development, its manifestation in behavior, and the diversity of selves in humans, animals, and, potentially, machines. This paper reviews robotics research that addresses the topic of the self—the minimal self, the extended self, and disorders of the self—and highlights future directions and open challenges in understanding the self through constructing its components in artificial systems. An emerging view is that key phenomena of the self can be generated in robots with suitably configured sensor and actuator systems and a layered cognitive architecture involving networks of predictive models. 001037622 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001037622 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001037622 7001_ $$0P:(DE-Juel1)176404$$aVogeley, Kai$$b1$$ufzj 001037622 7001_ $$00000-0003-3323-7357$$aWykowska, Agnieszka$$b2$$eCorresponding author 001037622 773__ $$0PERI:(DE-600)2877314-7$$a10.1126/scirobotics.adn2733$$gVol. 9, no. 95, p. eadn2733$$n95$$peadn2733$$tScience robotics$$v9$$x2470-9476$$y2024 001037622 909CO $$ooai:juser.fz-juelich.de:1037622$$pVDB 001037622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176404$$aForschungszentrum Jülich$$b1$$kFZJ 001037622 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001037622 9141_ $$y2024 001037622 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ROBOT : 2022$$d2024-12-10 001037622 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10 001037622 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10 001037622 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10 001037622 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-10 001037622 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10 001037622 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10 001037622 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10 001037622 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bSCI ROBOT : 2022$$d2024-12-10 001037622 920__ $$lyes 001037622 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 001037622 980__ $$ajournal 001037622 980__ $$aVDB 001037622 980__ $$aI:(DE-Juel1)INM-3-20090406 001037622 980__ $$aUNRESTRICTED