001037638 001__ 1037638
001037638 005__ 20250203124502.0
001037638 0247_ $$2doi$$a10.1029/2024JA032521
001037638 0247_ $$2ISSN$$a0196-6928
001037638 0247_ $$2ISSN$$a0148-0227
001037638 0247_ $$2ISSN$$a2156-2202
001037638 0247_ $$2ISSN$$a2169-9380
001037638 0247_ $$2ISSN$$a2169-9402
001037638 0247_ $$2WOS$$aWOS:001311665400001
001037638 037__ $$aFZJ-2025-00803
001037638 082__ $$a520
001037638 1001_ $$00000-0002-6459-005X$$aVadas, Sharon L.$$b0$$eCorresponding author
001037638 245__ $$aThe Role of the Polar Vortex Jet for Secondary and Higher‐Order Gravity Waves in the Northern Mesosphere and Thermosphere During 11–14 January 2016
001037638 260__ $$aHoboken, NJ$$bWiley$$c2024
001037638 3367_ $$2DRIVER$$aarticle
001037638 3367_ $$2DataCite$$aOutput Types/Journal article
001037638 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737443634_5302
001037638 3367_ $$2BibTeX$$aARTICLE
001037638 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037638 3367_ $$00$$2EndNote$$aJournal Article
001037638 520__ $$aWe analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large-scale higher-order, thermospheric GWs. We find that the amplitudes of the secondary/higher-order GWs from sources below the polar vortex jet are exponentially magnified. The higher-order, thermospheric GWs have concentric ring, arc-like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher-order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengths λH ∼ 200 − 2,200 km, horizontal phase speeds cH ∼ 165 − 260 m/s, and periods τr ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large-scale, higher-order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid-thermosphere at ∼8–16 LT with λH ∼ 3,000 km and cH ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large-scale, higher-order thermospheric GWs via multi-step vertical coupling.
001037638 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037638 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037638 7001_ $$00000-0001-7883-3254$$aBecker, Erich$$b1
001037638 7001_ $$0P:(DE-HGF)0$$aBossert, Katrina$$b2
001037638 7001_ $$00000-0001-8498-7815$$aHozumi, Yuta$$b3
001037638 7001_ $$0P:(DE-HGF)0$$aStober, Gunter$$b4
001037638 7001_ $$0P:(DE-HGF)0$$aHarvey, V. Lynn$$b5
001037638 7001_ $$0P:(DE-HGF)0$$aBaumgarten, Gerd$$b6
001037638 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b7
001037638 773__ $$0PERI:(DE-600)3094181-7$$a10.1029/2024JA032521$$gVol. 129, no. 9, p. e2024JA032521$$n9$$pe2024JA032521$$tJGR / Space physics$$v129$$x0196-6928$$y2024
001037638 909CO $$ooai:juser.fz-juelich.de:1037638$$pVDB
001037638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b7$$kFZJ
001037638 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037638 9141_ $$y2024
001037638 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-11$$wger
001037638 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-SPACE : 2022$$d2024-12-11
001037638 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001037638 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001037638 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001037638 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001037638 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001037638 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001037638 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001037638 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001037638 920__ $$lyes
001037638 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037638 980__ $$ajournal
001037638 980__ $$aVDB
001037638 980__ $$aI:(DE-Juel1)JSC-20090406
001037638 980__ $$aUNRESTRICTED