001037639 001__ 1037639
001037639 005__ 20250203124501.0
001037639 0247_ $$2doi$$a10.1038/s41467-024-51019-z
001037639 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00804
001037639 0247_ $$2pmid$$a39143091
001037639 0247_ $$2WOS$$aWOS:001291857100021
001037639 037__ $$aFZJ-2025-00804
001037639 082__ $$a500
001037639 1001_ $$00000-0002-4705-6285$$aPargmann, Max$$b0$$eCorresponding author
001037639 245__ $$aAutomatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing
001037639 260__ $$aLondon$$bSpringer Nature$$c2024
001037639 3367_ $$2DRIVER$$aarticle
001037639 3367_ $$2DataCite$$aOutput Types/Journal article
001037639 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737379261_4846
001037639 3367_ $$2BibTeX$$aARTICLE
001037639 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037639 3367_ $$00$$2EndNote$$aJournal Article
001037639 520__ $$aConcentrating solar power plants are a clean energy source capable of competitive electricity generation even during night time, as well as the production of carbon-neutral fuels, offering a complementary role alongside photovoltaic plants. In these power plants, thousands of mirrors (heliostats) redirect sunlight onto a receiver, potentially generating temperatures exceeding 1000°C. Practically, such efficient temperatures are never attained. Several unknown, yet operationally crucial parameters, e.g., misalignment in sun-tracking and surface deformations can cause dangerous temperature spikes, necessitating high safety margins. For competitive levelized cost of energy and large-scale deployment, in-situ error measurements are an essential, yet unattained factor. To tackle this, we introduce a differentiable ray tracing machine learning approach that can derive the irradiance distribution of heliostats in a data-driven manner from a small number of calibration images already collected in most solar towers. By applying gradient-based optimization and a learning non-uniform rational B-spline heliostat model, our approach is able to determine sub-millimeter imperfections in a real-world setting and predict heliostat-specific irradiance profiles, exceeding the precision of the state-of-the-art and establishing full automatization. The new optimization pipeline enables concurrent training of physical and data-driven models, representing a pioneering effort in unifying both paradigms for concentrating solar power plants and can be a blueprint for other domains.
001037639 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037639 536__ $$0G:(DE-Juel-1)E.40401.62$$aHelmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)$$cE.40401.62$$x1
001037639 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037639 7001_ $$0P:(DE-Juel1)187002$$aEbert, Jan$$b1$$ufzj
001037639 7001_ $$0P:(DE-Juel1)162390$$aGötz, Markus$$b2
001037639 7001_ $$00000-0003-2929-8667$$aMaldonado Quinto, Daniel$$b3
001037639 7001_ $$0P:(DE-HGF)0$$aPitz-Paal, Robert$$b4
001037639 7001_ $$0P:(DE-Juel1)185654$$aKesselheim, Stefan$$b5
001037639 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-51019-z$$gVol. 15, no. 1, p. 6997$$n1$$p6997$$tNature Communications$$v15$$x2041-1723$$y2024
001037639 8564_ $$uhttps://juser.fz-juelich.de/record/1037639/files/s41467-024-51019-z.pdf$$yOpenAccess
001037639 909CO $$ooai:juser.fz-juelich.de:1037639$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187002$$aForschungszentrum Jülich$$b1$$kFZJ
001037639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185654$$aForschungszentrum Jülich$$b5$$kFZJ
001037639 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037639 9141_ $$y2024
001037639 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037639 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
001037639 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
001037639 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001037639 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037639 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
001037639 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001037639 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001037639 920__ $$lyes
001037639 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037639 980__ $$ajournal
001037639 980__ $$aVDB
001037639 980__ $$aUNRESTRICTED
001037639 980__ $$aI:(DE-Juel1)JSC-20090406
001037639 9801_ $$aFullTexts